Vortex core dynamics in a swirling jet near vortex breakdown

Sean Clees, Jacques Lewalle, Mark Frederick, Jacqueline O’Connor

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

The dynamics of the vortex core are investigated in a swirling jet at swirl numbers in the range of the critical swirl number for vortex breakdown. Vortex breakdown, a bifurcation in the structure of a swirling jet, results in the establishment of a stagnation point and recirculation region along the centerline of the jet. In this study, we explore the dynamics of the swirling jet near vortex breakdown. Investigation of time-averaged velocity fields and profiles leads to the identification of three flow regimes: pre-breakdown, near-breakdown, and post-breakdown. Velocity fields in these regimes are further analyzed using dynamic mode decomposition, Rankine-vortex fitting, and proper orthogonal decomposition to characterize jet dynamics with a particular focus on the development of the recirculation region characteristic of vortex breakdown. A precessing vortex core is also identified in the post-breakdown regime and its behavior is discussed.

Original languageEnglish (US)
Title of host publicationAIAA Aerospace Sciences Meeting
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
Edition210059
ISBN (Print)9781624105241
DOIs
StatePublished - Jan 1 2018
EventAIAA Aerospace Sciences Meeting, 2018 - Kissimmee, United States
Duration: Jan 8 2018Jan 12 2018

Other

OtherAIAA Aerospace Sciences Meeting, 2018
CountryUnited States
CityKissimmee
Period1/8/181/12/18

ASJC Scopus subject areas

  • Aerospace Engineering

Fingerprint Dive into the research topics of 'Vortex core dynamics in a swirling jet near vortex breakdown'. Together they form a unique fingerprint.

Cite this