Abstract
We have made the first measurements of the virtual Compton scattering (VCS) process via the H(e, e'p)γ exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the W-dependence at fixed Q2=1 GeV2 and for the Q2 dependence at fixed W near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed Q2 dependence is smooth. The measured ratio of H(e, e'p)γ to H(e, e'p)π0 cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to real Compton scattering (RCS) at high energy and large angles, our VCS data at the highest W (1.8-1.9 GeV) show a striking Q2 independence, which may suggest a transition to a perturbative scattering mechanism at the quark level.
Original language | English (US) |
---|---|
Article number | 015201 |
Journal | Physical Review C - Nuclear Physics |
Volume | 79 |
Issue number | 1 |
DOIs | |
State | Published - Jan 5 2009 |
ASJC Scopus subject areas
- Nuclear and High Energy Physics
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Virtual Compton scattering and neutral pion electroproduction in the resonance region up to the deep inelastic region at backward angles'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Virtual Compton scattering and neutral pion electroproduction in the resonance region up to the deep inelastic region at backward angles. / Laveissière, G.; Degrande, N.; Jaminion, S.; Jutier, C.; Todor, L.; Di Salvo, R.; Van Hoorebeke, L.; Alexa, L. C.; Anderson, B. D.; Aniol, K. A.; Arundell, K.; Audit, G.; Auerbach, L.; Baker, F. T.; Baylac, M.; Berthot, J.; Bertin, P. Y.; Bertozzi, W.; Bimbot, L.; Boeglin, W. U.; Brash, E. J.; Breton, V.; Breuer, H.; Burtin, E.; Calarco, J. R.; Cardman, L. S.; Cavata, C.; Chang, C. C.; Chen, J. P.; Chudakov, E.; Cisbani, E.; Dale, D. S.; De Jager, C. W.; De Leo, R.; Deur, A.; D'Hose, N.; Dodge, G. E.; Domingo, J. J.; Elouadrhiri, L.; Epstein, M. B.; Ewell, L. A.; Finn, J. M.; Fissum, K. G.; Fonvieille, H.; Fournier, G.; Frois, B.; Frullani, S.; Furget, C.; Gao, H.; Gao, J.; Garibaldi, F.; Gasparian, A.; Gilad, S.; Gilman, R.; Glamazdin, A.; Glashausser, C.; Gomez, J.; Gorbenko, V.; Grenier, P.; Guichon, P. A.M.; Hansen, J. O.; Holmes, R.; Holtrop, M.; Howell, C.; Huber, G. M.; Hyde, C. E.; Incerti, S.; Iodice, M.; Jardillier, J.; Jones, M. K.; Kahl, W.; Kamalov, S.; Kato, S.; Katramatou, A. T.; Kelly, J. J.; Kerhoas, S.; Ketikyan, A.; Khayat, M.; Kino, K.; Kox, S.; Kramer, L. H.; Kumar, K. S.; Kumbartzki, G.; Kuss, M.; Leone, A.; LeRose, J. J.; Liang, M.; Lindgren, R. A.; Liyanage, N.; Lolos, G. J.; Lourie, R. W.; Madey, R.; Maeda, K.; Malov, S.; Manley, D. M.; Marchand, C.; Marchand, D.; Margaziotis, D. J.; Markowitz, P.; Marroncle, J.; Martino, J.; McCormick, K.; McIntyre, J.; Mehrabyan, S.; Merchez, F.; Meziani, Z. E.; Michaels, R.; Miller, G. W.; Mougey, J. Y.; Nanda, S. K.; Neyret, D.; Offermann, E. A.J.M.; Papandreou, Z.; Perdrisat, C. F.; Perrino, R.; Petratos, G. G.; Platchkov, S.; Pomatsalyuk, R.; Prout, D. L.; Punjabi, V. A.; Pussieux, T.; Quémenér, G.; Ransome, R. D.; Ravel, O.; Real, J. S.; Renard, F.; Roblin, Y.; Rowntree, D.; Rutledge, G.; Rutt, P. M.; Saha, A.; Saito, T.; Sarty, A. J.; Serdarevic, A.; Smith, T.; Smirnov, G.; Soldi, K.; Sorokin, P.; Souder, P. A.; Suleiman, R.; Templon, J. A.; Terasawa, T.; Tiator, L.; Tieulent, R.; Tomasi-Gustaffson, E.; Tsubota, H.; Ueno, H.; Ulmer, P. E.; Urciuoli, G. M.; Van De Vyver, R.; Van Der Meer, R. L.J.; Vernin, P.; Vlahovic, B.; Voskanyan, H.; Voutier, E.; Watson, J. W.; Weinstein, L. B.; Wijesooriya, K.; Wilson, R.; Wojtsekhowski, B. B.; Zainea, D. G.; Zhang, W. M.; Zhao, J.; Zhou, Z. L.
In: Physical Review C - Nuclear Physics, Vol. 79, No. 1, 015201, 05.01.2009.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Virtual Compton scattering and neutral pion electroproduction in the resonance region up to the deep inelastic region at backward angles
AU - Laveissière, G.
AU - Degrande, N.
AU - Jaminion, S.
AU - Jutier, C.
AU - Todor, L.
AU - Di Salvo, R.
AU - Van Hoorebeke, L.
AU - Alexa, L. C.
AU - Anderson, B. D.
AU - Aniol, K. A.
AU - Arundell, K.
AU - Audit, G.
AU - Auerbach, L.
AU - Baker, F. T.
AU - Baylac, M.
AU - Berthot, J.
AU - Bertin, P. Y.
AU - Bertozzi, W.
AU - Bimbot, L.
AU - Boeglin, W. U.
AU - Brash, E. J.
AU - Breton, V.
AU - Breuer, H.
AU - Burtin, E.
AU - Calarco, J. R.
AU - Cardman, L. S.
AU - Cavata, C.
AU - Chang, C. C.
AU - Chen, J. P.
AU - Chudakov, E.
AU - Cisbani, E.
AU - Dale, D. S.
AU - De Jager, C. W.
AU - De Leo, R.
AU - Deur, A.
AU - D'Hose, N.
AU - Dodge, G. E.
AU - Domingo, J. J.
AU - Elouadrhiri, L.
AU - Epstein, M. B.
AU - Ewell, L. A.
AU - Finn, J. M.
AU - Fissum, K. G.
AU - Fonvieille, H.
AU - Fournier, G.
AU - Frois, B.
AU - Frullani, S.
AU - Furget, C.
AU - Gao, H.
AU - Gao, J.
AU - Garibaldi, F.
AU - Gasparian, A.
AU - Gilad, S.
AU - Gilman, R.
AU - Glamazdin, A.
AU - Glashausser, C.
AU - Gomez, J.
AU - Gorbenko, V.
AU - Grenier, P.
AU - Guichon, P. A.M.
AU - Hansen, J. O.
AU - Holmes, R.
AU - Holtrop, M.
AU - Howell, C.
AU - Huber, G. M.
AU - Hyde, C. E.
AU - Incerti, S.
AU - Iodice, M.
AU - Jardillier, J.
AU - Jones, M. K.
AU - Kahl, W.
AU - Kamalov, S.
AU - Kato, S.
AU - Katramatou, A. T.
AU - Kelly, J. J.
AU - Kerhoas, S.
AU - Ketikyan, A.
AU - Khayat, M.
AU - Kino, K.
AU - Kox, S.
AU - Kramer, L. H.
AU - Kumar, K. S.
AU - Kumbartzki, G.
AU - Kuss, M.
AU - Leone, A.
AU - LeRose, J. J.
AU - Liang, M.
AU - Lindgren, R. A.
AU - Liyanage, N.
AU - Lolos, G. J.
AU - Lourie, R. W.
AU - Madey, R.
AU - Maeda, K.
AU - Malov, S.
AU - Manley, D. M.
AU - Marchand, C.
AU - Marchand, D.
AU - Margaziotis, D. J.
AU - Markowitz, P.
AU - Marroncle, J.
AU - Martino, J.
AU - McCormick, K.
AU - McIntyre, J.
AU - Mehrabyan, S.
AU - Merchez, F.
AU - Meziani, Z. E.
AU - Michaels, R.
AU - Miller, G. W.
AU - Mougey, J. Y.
AU - Nanda, S. K.
AU - Neyret, D.
AU - Offermann, E. A.J.M.
AU - Papandreou, Z.
AU - Perdrisat, C. F.
AU - Perrino, R.
AU - Petratos, G. G.
AU - Platchkov, S.
AU - Pomatsalyuk, R.
AU - Prout, D. L.
AU - Punjabi, V. A.
AU - Pussieux, T.
AU - Quémenér, G.
AU - Ransome, R. D.
AU - Ravel, O.
AU - Real, J. S.
AU - Renard, F.
AU - Roblin, Y.
AU - Rowntree, D.
AU - Rutledge, G.
AU - Rutt, P. M.
AU - Saha, A.
AU - Saito, T.
AU - Sarty, A. J.
AU - Serdarevic, A.
AU - Smith, T.
AU - Smirnov, G.
AU - Soldi, K.
AU - Sorokin, P.
AU - Souder, P. A.
AU - Suleiman, R.
AU - Templon, J. A.
AU - Terasawa, T.
AU - Tiator, L.
AU - Tieulent, R.
AU - Tomasi-Gustaffson, E.
AU - Tsubota, H.
AU - Ueno, H.
AU - Ulmer, P. E.
AU - Urciuoli, G. M.
AU - Van De Vyver, R.
AU - Van Der Meer, R. L.J.
AU - Vernin, P.
AU - Vlahovic, B.
AU - Voskanyan, H.
AU - Voutier, E.
AU - Watson, J. W.
AU - Weinstein, L. B.
AU - Wijesooriya, K.
AU - Wilson, R.
AU - Wojtsekhowski, B. B.
AU - Zainea, D. G.
AU - Zhang, W. M.
AU - Zhao, J.
AU - Zhou, Z. L.
PY - 2009/1/5
Y1 - 2009/1/5
N2 - We have made the first measurements of the virtual Compton scattering (VCS) process via the H(e, e'p)γ exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the W-dependence at fixed Q2=1 GeV2 and for the Q2 dependence at fixed W near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed Q2 dependence is smooth. The measured ratio of H(e, e'p)γ to H(e, e'p)π0 cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to real Compton scattering (RCS) at high energy and large angles, our VCS data at the highest W (1.8-1.9 GeV) show a striking Q2 independence, which may suggest a transition to a perturbative scattering mechanism at the quark level.
AB - We have made the first measurements of the virtual Compton scattering (VCS) process via the H(e, e'p)γ exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the W-dependence at fixed Q2=1 GeV2 and for the Q2 dependence at fixed W near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed Q2 dependence is smooth. The measured ratio of H(e, e'p)γ to H(e, e'p)π0 cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to real Compton scattering (RCS) at high energy and large angles, our VCS data at the highest W (1.8-1.9 GeV) show a striking Q2 independence, which may suggest a transition to a perturbative scattering mechanism at the quark level.
UR - http://www.scopus.com/inward/record.url?scp=58249097306&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=58249097306&partnerID=8YFLogxK
U2 - 10.1103/PhysRevC.79.015201
DO - 10.1103/PhysRevC.79.015201
M3 - Article
AN - SCOPUS:58249097306
VL - 79
JO - Physical Review C - Nuclear Physics
JF - Physical Review C - Nuclear Physics
SN - 0556-2813
IS - 1
M1 - 015201
ER -