TY - GEN
T1 - VetIoT
T2 - 2023 IEEE Conference on Communications and Network Security, CNS 2023
AU - Nafis, Akib Jawad
AU - Chowdhury, Omar
AU - Hoque, Endadul
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Smart homes are powered by numerous programmable IoT platforms. Despite tremendous innovations, these platforms often suffer from safety and security issues. One class of defense solutions dynamically enforces safety and security policies, which essentially capture the expected behavior of the IoT system. While many proposed works were built on this runtime approach, they all are under-vetted. The primary reason lies in their evaluation approach. They are mostly self-evaluated in isolation using a virtual testbed combined with manually orchestrated test scenarios that rely on user interactions with the platform's UI. Such hand-crafted and non-uniform evaluation setups are limiting not only the reproducibility but also a comparative analysis of their efficacy results. Closing this gap in the traditional way requires a huge upfront manual effort, which causes the researchers turn away from any large-scale comparative empirical evaluation. Therefore, in this paper, we propose a highly-automated uniform evaluation platform, dubbed VetIoT, to vet the defense solutions that hinge on runtime policy enforcement. Given a defense solution, VetIoT easily instantiates a virtual testbed inside which the solution is empirically evaluated. VetIoT replaces manual UI-based interactions with an automated event simulator and manual inspection of test outcomes with an automated comparator. We developed a fully-functional prototype of VetIoT and applied it on three runtime policy enforcement solutions: Expat, Patriot, and IoTguard. VetIoT reproduced their individual prior results and assessed their efficacy results via stress testing and differential testing. We believe VetIoT can foster future research/evaluation.
AB - Smart homes are powered by numerous programmable IoT platforms. Despite tremendous innovations, these platforms often suffer from safety and security issues. One class of defense solutions dynamically enforces safety and security policies, which essentially capture the expected behavior of the IoT system. While many proposed works were built on this runtime approach, they all are under-vetted. The primary reason lies in their evaluation approach. They are mostly self-evaluated in isolation using a virtual testbed combined with manually orchestrated test scenarios that rely on user interactions with the platform's UI. Such hand-crafted and non-uniform evaluation setups are limiting not only the reproducibility but also a comparative analysis of their efficacy results. Closing this gap in the traditional way requires a huge upfront manual effort, which causes the researchers turn away from any large-scale comparative empirical evaluation. Therefore, in this paper, we propose a highly-automated uniform evaluation platform, dubbed VetIoT, to vet the defense solutions that hinge on runtime policy enforcement. Given a defense solution, VetIoT easily instantiates a virtual testbed inside which the solution is empirically evaluated. VetIoT replaces manual UI-based interactions with an automated event simulator and manual inspection of test outcomes with an automated comparator. We developed a fully-functional prototype of VetIoT and applied it on three runtime policy enforcement solutions: Expat, Patriot, and IoTguard. VetIoT reproduced their individual prior results and assessed their efficacy results via stress testing and differential testing. We believe VetIoT can foster future research/evaluation.
KW - Evaluation
KW - IoT Security
KW - Testbed
UR - http://www.scopus.com/inward/record.url?scp=85177583748&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85177583748&partnerID=8YFLogxK
U2 - 10.1109/CNS59707.2023.10288667
DO - 10.1109/CNS59707.2023.10288667
M3 - Conference contribution
AN - SCOPUS:85177583748
T3 - 2023 IEEE Conference on Communications and Network Security, CNS 2023
BT - 2023 IEEE Conference on Communications and Network Security, CNS 2023
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 2 October 2023 through 5 October 2023
ER -