TY - GEN
T1 - Varying motor assistance during biceps curls induced via functional electrical stimulation
AU - Rouse, Courtney A.
AU - Cousin, Christian A.
AU - Duenas, Victor H.
AU - Dixon, Warren E.
N1 - Publisher Copyright:
Copyright © 2018 ASME.
PY - 2018
Y1 - 2018
N2 - Robot-assisted therapy has been established as a useful rehabilitation tool for motor recovery in people with various neurological impairments; however, balancing human and robot contribution, such that the target muscle is sufficiently exercised, is necessary to improve the outcome of rehabilitation protocols. Functional Electrical Stimulation (FES) can assist a person to move their limb by contracting the muscle; however, motor assistance is often necessary to accurately follow a desired limb trajectory, especially since stimulation can be limited due to various factors (e.g., subject comfort, stimulation saturation). In this paper, a motor is tasked with intermittently assisting the FES-activated biceps brachii in tracking a desired forearm trajectory whenever the FES input reaches a pre-set comfort threshold. A Lyapunov-like switched systems stability analysis is used to prove exponential stability of the human-robot system. Preliminary experiments demonstrate the feasibility and performance of the controller on two subjects with neurological impairments.
AB - Robot-assisted therapy has been established as a useful rehabilitation tool for motor recovery in people with various neurological impairments; however, balancing human and robot contribution, such that the target muscle is sufficiently exercised, is necessary to improve the outcome of rehabilitation protocols. Functional Electrical Stimulation (FES) can assist a person to move their limb by contracting the muscle; however, motor assistance is often necessary to accurately follow a desired limb trajectory, especially since stimulation can be limited due to various factors (e.g., subject comfort, stimulation saturation). In this paper, a motor is tasked with intermittently assisting the FES-activated biceps brachii in tracking a desired forearm trajectory whenever the FES input reaches a pre-set comfort threshold. A Lyapunov-like switched systems stability analysis is used to prove exponential stability of the human-robot system. Preliminary experiments demonstrate the feasibility and performance of the controller on two subjects with neurological impairments.
UR - http://www.scopus.com/inward/record.url?scp=85057327565&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85057327565&partnerID=8YFLogxK
U2 - 10.1115/DSCC2018-9083
DO - 10.1115/DSCC2018-9083
M3 - Conference contribution
AN - SCOPUS:85057327565
T3 - ASME 2018 Dynamic Systems and Control Conference, DSCC 2018
BT - Advances in Control Design Methods; Advances in Nonlinear Control; Advances in Robotics; Assistive and Rehabilitation Robotics; Automotive Dynamics and Emerging Powertrain Technologies; Automotive Systems; Bio Engineering Applications; Bio-Mechatronics and Physical Human Robot Interaction; Biomedical and Neural Systems; Biomedical and Neural Systems Modeling, Diagnostics, and Healthcare
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2018 Dynamic Systems and Control Conference, DSCC 2018
Y2 - 30 September 2018 through 3 October 2018
ER -