Abstract
We calculate the tree-level electroweak precision constraints on a wide class of little Higgs models including variations of the littlest Higgs SU(5)/SO(5), SU(6)/Sp(6), and SU(4)4/SU(3)4 models. By performing a global fit to the precision data we find that for generic regions of the parameter space the bound on the symmetry breaking scale f is several TeV, where we have kept the normalization of f constant in the different models. For example, the "minimal" implementation of SU(6)/Sp(6) is bounded by f>3.0TeV throughout most of the parameter space, and SU(4) 4/SU(3)4 is bounded by f2=f1 2+f22>(4.2TeV)2. In certain models, such as SU(4)4/SU(3)4, a large f does not directly imply a large amount of fine-tuning since the heavy-fermion masses that contribute to the Higgs boson mass can be lowered below f for a carefully chosen set of parameters. We also find that for certain models (or variations) there exist regions of parameter space in which the bound on f can be lowered into the range 1-2 TeV. These regions are typically characterized by a small mixing between heavy and standard model gauge bosons and a small (or vanishing) coupling between heavy U(1) gauge bosons and light fermions. Whether such a region of parameter space is natural or not is ultimately contingent on the UV completion.
Original language | English (US) |
---|---|
Article number | 035009 |
Journal | Physical Review D |
Volume | 68 |
Issue number | 3 |
DOIs | |
State | Published - 2003 |
Externally published | Yes |
ASJC Scopus subject areas
- Nuclear and High Energy Physics