Vanadium oxide as new charge recombination blocking layer for high efficiency dye-sensitized solar cells

Hytham Elbohy, Amit Thapa, Prashant Poudel, Nirmal Adhikary, Swaminathan Venkatesan, Qiquan Qiao

Research output: Contribution to journalArticlepeer-review

41 Scopus citations

Abstract

Vanadium pentoxide (V2O5) was used as a novel blocking layer in dye-sensitized solar cells (DSCs), leading to a significant efficiency increase from 8.78% to 9.65%. The addition of V2O5 layer to nanocrystalline (nc)-TiO2 increased peak external quantum efficiency (EQE) from~80% to ~88-89%. Cyclic Voltammetry analysis indicated a positive shift of Fermi-level in case of TiO2/V2O5 based cells supported by an increase of its capacitance comparing to bare TiO2 based cells. Electrochemical impedance spectroscopy (EIS) results exhibited a ~5 times higher charge recombination resistance (RCT) in V2O5 layer modified DSCs than conventional cells, which indicated that back charge transfer from TiO2 to tri-iodide in the electrolyte was substantially suppressed. Transient photovoltage measurements on conventional and V2O5 layer modified cells were conducted and their decays were fitted to calculate the electron recombination lifetime (τn), which increased by a factor of ~3 in V2O5-based DSCs. This indicated that V2O5 significantly reduced the recombination rate at TiO2/electrolyte interface, further supporting that V2O5 functioned as a new effective surface passivation layer.

Original languageEnglish (US)
Pages (from-to)368-375
Number of pages8
JournalNano Energy
Volume13
DOIs
StatePublished - Apr 1 2015
Externally publishedYes

Keywords

  • Charge recombination blocking layer
  • Dye-sensitized solar cells
  • Vanadium oxide

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • General Materials Science
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Vanadium oxide as new charge recombination blocking layer for high efficiency dye-sensitized solar cells'. Together they form a unique fingerprint.

Cite this