Validating gravitational-wave detections

The Advanced LIGO hardware injection system

C. Biwer, D. Barker, J. C. Batch, J. Betzwieser, R. P. Fisher, E. Goetz, S. Kandhasamy, S. Karki, J. S. Kissel, A. P. Lundgren, D. M. Macleod, A. Mullavey, K. Riles, J. G. Rollins, K. A. Thorne, E. Thrane, T. D. Abbott, B. Allen, Duncan Brown, P. Charlton & 27 others S. G. Crowder, P. Fritschel, J. B. Kanner, M. Landry, C. Lazzaro, M. Millhouse, M. Pitkin, R. L. Savage, P. Shawhan, D. H. Shoemaker, J. R. Smith, L. Sun, J. Veitch, S. Vitale, A. J. Weinstein, N. Cornish, R. C. Essick, M. Fays, E. Katsavounidis, J. Lange, T. B. Littenberg, R. Lynch, P. M. Meyers, F. Pannarale, R. Prix, R. O'Shaughnessy, D. Sigg

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

Hardware injections are simulated gravitational-wave signals added to the Laser Interferometer Gravitational-wave Observatory (LIGO). The detectors' test masses are physically displaced by an actuator in order to simulate the effects of a gravitational wave. The simulated signal initiates a control-system response which mimics that of a true gravitational wave. This provides an end-to-end test of LIGO's ability to observe gravitational waves. The gravitational-wave analyses used to detect and characterize signals are exercised with hardware injections. By looking for discrepancies between the injected and recovered signals, we are able to characterize the performance of analyses and the coupling of instrumental subsystems to the detectors' output channels. This paper describes the hardware injection system and the recovery of injected signals representing binary black hole mergers, a stochastic gravitational wave background, spinning neutron stars, and sine-Gaussians.

Original languageEnglish (US)
Article number062002
JournalPhysical Review D
Volume95
Issue number6
DOIs
StatePublished - Mar 27 2017

Fingerprint

LIGO (observatory)
gravitational waves
hardware
injection
detectors
metal spinning
neutron stars
actuators
recovery
output

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)

Cite this

Biwer, C., Barker, D., Batch, J. C., Betzwieser, J., Fisher, R. P., Goetz, E., ... Sigg, D. (2017). Validating gravitational-wave detections: The Advanced LIGO hardware injection system. Physical Review D, 95(6), [062002]. https://doi.org/10.1103/PhysRevD.95.062002

Validating gravitational-wave detections : The Advanced LIGO hardware injection system. / Biwer, C.; Barker, D.; Batch, J. C.; Betzwieser, J.; Fisher, R. P.; Goetz, E.; Kandhasamy, S.; Karki, S.; Kissel, J. S.; Lundgren, A. P.; Macleod, D. M.; Mullavey, A.; Riles, K.; Rollins, J. G.; Thorne, K. A.; Thrane, E.; Abbott, T. D.; Allen, B.; Brown, Duncan; Charlton, P.; Crowder, S. G.; Fritschel, P.; Kanner, J. B.; Landry, M.; Lazzaro, C.; Millhouse, M.; Pitkin, M.; Savage, R. L.; Shawhan, P.; Shoemaker, D. H.; Smith, J. R.; Sun, L.; Veitch, J.; Vitale, S.; Weinstein, A. J.; Cornish, N.; Essick, R. C.; Fays, M.; Katsavounidis, E.; Lange, J.; Littenberg, T. B.; Lynch, R.; Meyers, P. M.; Pannarale, F.; Prix, R.; O'Shaughnessy, R.; Sigg, D.

In: Physical Review D, Vol. 95, No. 6, 062002, 27.03.2017.

Research output: Contribution to journalArticle

Biwer, C, Barker, D, Batch, JC, Betzwieser, J, Fisher, RP, Goetz, E, Kandhasamy, S, Karki, S, Kissel, JS, Lundgren, AP, Macleod, DM, Mullavey, A, Riles, K, Rollins, JG, Thorne, KA, Thrane, E, Abbott, TD, Allen, B, Brown, D, Charlton, P, Crowder, SG, Fritschel, P, Kanner, JB, Landry, M, Lazzaro, C, Millhouse, M, Pitkin, M, Savage, RL, Shawhan, P, Shoemaker, DH, Smith, JR, Sun, L, Veitch, J, Vitale, S, Weinstein, AJ, Cornish, N, Essick, RC, Fays, M, Katsavounidis, E, Lange, J, Littenberg, TB, Lynch, R, Meyers, PM, Pannarale, F, Prix, R, O'Shaughnessy, R & Sigg, D 2017, 'Validating gravitational-wave detections: The Advanced LIGO hardware injection system', Physical Review D, vol. 95, no. 6, 062002. https://doi.org/10.1103/PhysRevD.95.062002
Biwer C, Barker D, Batch JC, Betzwieser J, Fisher RP, Goetz E et al. Validating gravitational-wave detections: The Advanced LIGO hardware injection system. Physical Review D. 2017 Mar 27;95(6). 062002. https://doi.org/10.1103/PhysRevD.95.062002
Biwer, C. ; Barker, D. ; Batch, J. C. ; Betzwieser, J. ; Fisher, R. P. ; Goetz, E. ; Kandhasamy, S. ; Karki, S. ; Kissel, J. S. ; Lundgren, A. P. ; Macleod, D. M. ; Mullavey, A. ; Riles, K. ; Rollins, J. G. ; Thorne, K. A. ; Thrane, E. ; Abbott, T. D. ; Allen, B. ; Brown, Duncan ; Charlton, P. ; Crowder, S. G. ; Fritschel, P. ; Kanner, J. B. ; Landry, M. ; Lazzaro, C. ; Millhouse, M. ; Pitkin, M. ; Savage, R. L. ; Shawhan, P. ; Shoemaker, D. H. ; Smith, J. R. ; Sun, L. ; Veitch, J. ; Vitale, S. ; Weinstein, A. J. ; Cornish, N. ; Essick, R. C. ; Fays, M. ; Katsavounidis, E. ; Lange, J. ; Littenberg, T. B. ; Lynch, R. ; Meyers, P. M. ; Pannarale, F. ; Prix, R. ; O'Shaughnessy, R. ; Sigg, D. / Validating gravitational-wave detections : The Advanced LIGO hardware injection system. In: Physical Review D. 2017 ; Vol. 95, No. 6.
@article{10e60b7a58a24fb0ab4e7f0789c8564a,
title = "Validating gravitational-wave detections: The Advanced LIGO hardware injection system",
abstract = "Hardware injections are simulated gravitational-wave signals added to the Laser Interferometer Gravitational-wave Observatory (LIGO). The detectors' test masses are physically displaced by an actuator in order to simulate the effects of a gravitational wave. The simulated signal initiates a control-system response which mimics that of a true gravitational wave. This provides an end-to-end test of LIGO's ability to observe gravitational waves. The gravitational-wave analyses used to detect and characterize signals are exercised with hardware injections. By looking for discrepancies between the injected and recovered signals, we are able to characterize the performance of analyses and the coupling of instrumental subsystems to the detectors' output channels. This paper describes the hardware injection system and the recovery of injected signals representing binary black hole mergers, a stochastic gravitational wave background, spinning neutron stars, and sine-Gaussians.",
author = "C. Biwer and D. Barker and Batch, {J. C.} and J. Betzwieser and Fisher, {R. P.} and E. Goetz and S. Kandhasamy and S. Karki and Kissel, {J. S.} and Lundgren, {A. P.} and Macleod, {D. M.} and A. Mullavey and K. Riles and Rollins, {J. G.} and Thorne, {K. A.} and E. Thrane and Abbott, {T. D.} and B. Allen and Duncan Brown and P. Charlton and Crowder, {S. G.} and P. Fritschel and Kanner, {J. B.} and M. Landry and C. Lazzaro and M. Millhouse and M. Pitkin and Savage, {R. L.} and P. Shawhan and Shoemaker, {D. H.} and Smith, {J. R.} and L. Sun and J. Veitch and S. Vitale and Weinstein, {A. J.} and N. Cornish and Essick, {R. C.} and M. Fays and E. Katsavounidis and J. Lange and Littenberg, {T. B.} and R. Lynch and Meyers, {P. M.} and F. Pannarale and R. Prix and R. O'Shaughnessy and D. Sigg",
year = "2017",
month = "3",
day = "27",
doi = "10.1103/PhysRevD.95.062002",
language = "English (US)",
volume = "95",
journal = "Physical Review D",
issn = "2470-0010",
publisher = "American Physical Society",
number = "6",

}

TY - JOUR

T1 - Validating gravitational-wave detections

T2 - The Advanced LIGO hardware injection system

AU - Biwer, C.

AU - Barker, D.

AU - Batch, J. C.

AU - Betzwieser, J.

AU - Fisher, R. P.

AU - Goetz, E.

AU - Kandhasamy, S.

AU - Karki, S.

AU - Kissel, J. S.

AU - Lundgren, A. P.

AU - Macleod, D. M.

AU - Mullavey, A.

AU - Riles, K.

AU - Rollins, J. G.

AU - Thorne, K. A.

AU - Thrane, E.

AU - Abbott, T. D.

AU - Allen, B.

AU - Brown, Duncan

AU - Charlton, P.

AU - Crowder, S. G.

AU - Fritschel, P.

AU - Kanner, J. B.

AU - Landry, M.

AU - Lazzaro, C.

AU - Millhouse, M.

AU - Pitkin, M.

AU - Savage, R. L.

AU - Shawhan, P.

AU - Shoemaker, D. H.

AU - Smith, J. R.

AU - Sun, L.

AU - Veitch, J.

AU - Vitale, S.

AU - Weinstein, A. J.

AU - Cornish, N.

AU - Essick, R. C.

AU - Fays, M.

AU - Katsavounidis, E.

AU - Lange, J.

AU - Littenberg, T. B.

AU - Lynch, R.

AU - Meyers, P. M.

AU - Pannarale, F.

AU - Prix, R.

AU - O'Shaughnessy, R.

AU - Sigg, D.

PY - 2017/3/27

Y1 - 2017/3/27

N2 - Hardware injections are simulated gravitational-wave signals added to the Laser Interferometer Gravitational-wave Observatory (LIGO). The detectors' test masses are physically displaced by an actuator in order to simulate the effects of a gravitational wave. The simulated signal initiates a control-system response which mimics that of a true gravitational wave. This provides an end-to-end test of LIGO's ability to observe gravitational waves. The gravitational-wave analyses used to detect and characterize signals are exercised with hardware injections. By looking for discrepancies between the injected and recovered signals, we are able to characterize the performance of analyses and the coupling of instrumental subsystems to the detectors' output channels. This paper describes the hardware injection system and the recovery of injected signals representing binary black hole mergers, a stochastic gravitational wave background, spinning neutron stars, and sine-Gaussians.

AB - Hardware injections are simulated gravitational-wave signals added to the Laser Interferometer Gravitational-wave Observatory (LIGO). The detectors' test masses are physically displaced by an actuator in order to simulate the effects of a gravitational wave. The simulated signal initiates a control-system response which mimics that of a true gravitational wave. This provides an end-to-end test of LIGO's ability to observe gravitational waves. The gravitational-wave analyses used to detect and characterize signals are exercised with hardware injections. By looking for discrepancies between the injected and recovered signals, we are able to characterize the performance of analyses and the coupling of instrumental subsystems to the detectors' output channels. This paper describes the hardware injection system and the recovery of injected signals representing binary black hole mergers, a stochastic gravitational wave background, spinning neutron stars, and sine-Gaussians.

UR - http://www.scopus.com/inward/record.url?scp=85022331040&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85022331040&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.95.062002

DO - 10.1103/PhysRevD.95.062002

M3 - Article

VL - 95

JO - Physical Review D

JF - Physical Review D

SN - 2470-0010

IS - 6

M1 - 062002

ER -