TY - JOUR
T1 - Vacancy diffusion in the triangular-lattice dimer model
AU - Jeng, Monwhea
AU - Bowick, Mark J.
AU - Krauth, Werner
AU - Schwarz, J. M.
AU - Xing, Xiangjun
PY - 2008/8/12
Y1 - 2008/8/12
N2 - We study vacancy diffusion on the classical triangular-lattice dimer model, subject to the kinetic constraint that dimers can only translate, but not rotate. A single vacancy, i.e., a monomer, in an otherwise fully packed lattice, is always localized in a treelike structure. The distribution of tree sizes is asymptotically exponential and has an average of 8.16±0.01 sites. A connected pair of monomers has a finite probability of being delocalized. When delocalized, the diffusion of monomers is anomalous: x 2 ∝ tβ, with β=0.46±0.06. We also find that the same exponent β governs diffusion of clusters of three or four monomers, as well as the diffusion of dimers at finite but low monomer densities. We argue that coordinated motion of monomer pairs is the basic mechanism allowing large-scale transport at low monomer densities. We further identify a "swap-tunneling" mechanism for diffusion of monomer pairs, where a subtle interplay between swap moves (translations of dimers transverse to their axes) and glide moves (translations of dimers parallel to their axes) plays an essential role.
AB - We study vacancy diffusion on the classical triangular-lattice dimer model, subject to the kinetic constraint that dimers can only translate, but not rotate. A single vacancy, i.e., a monomer, in an otherwise fully packed lattice, is always localized in a treelike structure. The distribution of tree sizes is asymptotically exponential and has an average of 8.16±0.01 sites. A connected pair of monomers has a finite probability of being delocalized. When delocalized, the diffusion of monomers is anomalous: x 2 ∝ tβ, with β=0.46±0.06. We also find that the same exponent β governs diffusion of clusters of three or four monomers, as well as the diffusion of dimers at finite but low monomer densities. We argue that coordinated motion of monomer pairs is the basic mechanism allowing large-scale transport at low monomer densities. We further identify a "swap-tunneling" mechanism for diffusion of monomer pairs, where a subtle interplay between swap moves (translations of dimers transverse to their axes) and glide moves (translations of dimers parallel to their axes) plays an essential role.
UR - http://www.scopus.com/inward/record.url?scp=49549117106&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=49549117106&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.78.021112
DO - 10.1103/PhysRevE.78.021112
M3 - Article
AN - SCOPUS:49549117106
SN - 1539-3755
VL - 78
JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
IS - 2
M1 - 021112
ER -