Using physiologically-based pharmacokinetic-guided “body-on-a-chip” systems to predict mammalian response to drug and chemical exposure

Jong Hwan Sung, Balaji Srinivasan, Mandy Brigitte Esch, William T. McLamb, Catia Bernabini, Michael L. Shuler, James J. Hickman

Research output: Contribution to journalArticlepeer-review

117 Scopus citations

Abstract

The continued development of in vitro systems that accurately emulate human response to drugs or chemical agents will impact drug development, our understanding of chemical toxicity, and enhance our ability to respond to threats from chemical or biological agents. A promising technology is to build microscale replicas of humans that capture essential elements of physiology, pharmacology, and/or toxicology (microphysiological systems). Here, we review progress on systems for microscale models of mammalian systems that include two or more integrated cellular components. These systems are described as a “body-on-a-chip”, and utilize the concept of physiologically-based pharmacokinetic (PBPK) modeling in the design. These microscale systems can also be used as model systems to predict whole-body responses to drugs as well as study the mechanism of action of drugs using PBPK analysis. In this review, we provide examples of various approaches to construct such systems with a focus on their physiological usefulness and various approaches to measure responses (e.g. chemical, electrical, or mechanical force and cellular viability and morphology). While the goal is to predict human response, other mammalian cell types can be utilized with the same principle to predict animal response. These systems will be evaluated on their potential to be physiologically accurate, to provide effective and efficient platform for analytics with accessibility to a wide range of users, for ease of incorporation of analytics, functional for weeks to months, and the ability to replicate previously observed human responses.

Original languageEnglish (US)
Pages (from-to)1225-1239
Number of pages15
JournalExperimental Biology and Medicine
Volume239
Issue number9
DOIs
StatePublished - Sep 1 2014

Keywords

  • Microphysiological system
  • PBPK models
  • chemical analysis
  • electrical analysis
  • mechanical analysis
  • microfabrication

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'Using physiologically-based pharmacokinetic-guided “body-on-a-chip” systems to predict mammalian response to drug and chemical exposure'. Together they form a unique fingerprint.

Cite this