Universal hypothesis testing with kernels: Asymptotically optimal tests for goodness of fit

Shengyu Zhu, Biao Chen, Pengfei Yang, Zhitang Chen

Research output: Contribution to conferencePaperpeer-review

1 Scopus citations

Abstract

We characterize the asymptotic performance of nonparametric goodness of fit testing. The exponential decay rate of the type-II error probability is used as the asymptotic performance metric, and a test is optimal if it achieves the maximum rate subject to a constant level constraint on the type-I error probability. We show that two classes of Maximum Mean Discrepancy (MMD) based tests attain this optimality on Rd, while the quadratic-time Kernel Stein Discrepancy (KSD) based tests achieve the maximum exponential decay rate under a relaxed level constraint. Under the same performance metric, we proceed to show that the quadratic-time MMD based two-sample tests are also optimal for general two-sample problems, provided that kernels are bounded continuous and characteristic. Key to our approach are Sanov's theorem from large deviation theory and the weak metrizable properties of the MMD and KSD.

Original languageEnglish (US)
StatePublished - 2020
Event22nd International Conference on Artificial Intelligence and Statistics, AISTATS 2019 - Naha, Japan
Duration: Apr 16 2019Apr 18 2019

Conference

Conference22nd International Conference on Artificial Intelligence and Statistics, AISTATS 2019
Country/TerritoryJapan
CityNaha
Period4/16/194/18/19

ASJC Scopus subject areas

  • Artificial Intelligence
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Universal hypothesis testing with kernels: Asymptotically optimal tests for goodness of fit'. Together they form a unique fingerprint.

Cite this