TY - JOUR
T1 - Unilateral naris closure and vascular development in the rat olfactory bulb
AU - Korol, D. L.
AU - Brunjes, P. C.
PY - 1992/2
Y1 - 1992/2
N2 - The blood supply to the brain has been linked closely to nervous system function and metabolism, thereby possibly playing a direct role in brain maturation. Previously, we demonstrated that closure of an external naris early in life results in large changes within the olfactory bulb, including reductions in laminar volume and cell number and a rapid decline in metabolism and protein synthesis. To understand the role of the blood supply in the dramatic changes following naris closure, the present study examines the development of olfactory bulb vasculature in unilaterally odor-deprived and control rats. On post-partum day 1 (P1; the day after birth), littermate rat pups underwent either unilateral naris occlusion or sham surgery. On P5, P10, P15, P20, P30 and P60, animals were perfused with an india ink-gelatin mixture to assess blood vessel amount and complexity. Densitometric analyses were performed to obtain values of blood vessel area ratios (vessel area/tissue area), branch point number and branch point density. Considerable vessel development in all bulbs occurred over the first two to three weeks post-partum. By P20, large reductions in vessel area ratios were observed in all constituent laminae of deprived bulbs. While similar reductions in number of vessel branch points/tissue area were seen, few changes were noted in the number of branch points/vessel area. The effects were primarily confined to early developmental periods: bulb vasculature in animals deprived at older ages (P40) appeared normal. The results indicate that the vasculature responds to alterations in sensory stimulation early in life, therefore potentially playing an important regulative role in neural development.
AB - The blood supply to the brain has been linked closely to nervous system function and metabolism, thereby possibly playing a direct role in brain maturation. Previously, we demonstrated that closure of an external naris early in life results in large changes within the olfactory bulb, including reductions in laminar volume and cell number and a rapid decline in metabolism and protein synthesis. To understand the role of the blood supply in the dramatic changes following naris closure, the present study examines the development of olfactory bulb vasculature in unilaterally odor-deprived and control rats. On post-partum day 1 (P1; the day after birth), littermate rat pups underwent either unilateral naris occlusion or sham surgery. On P5, P10, P15, P20, P30 and P60, animals were perfused with an india ink-gelatin mixture to assess blood vessel amount and complexity. Densitometric analyses were performed to obtain values of blood vessel area ratios (vessel area/tissue area), branch point number and branch point density. Considerable vessel development in all bulbs occurred over the first two to three weeks post-partum. By P20, large reductions in vessel area ratios were observed in all constituent laminae of deprived bulbs. While similar reductions in number of vessel branch points/tissue area were seen, few changes were noted in the number of branch points/vessel area. The effects were primarily confined to early developmental periods: bulb vasculature in animals deprived at older ages (P40) appeared normal. The results indicate that the vasculature responds to alterations in sensory stimulation early in life, therefore potentially playing an important regulative role in neural development.
UR - http://www.scopus.com/inward/record.url?scp=0026565491&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0026565491&partnerID=8YFLogxK
U2 - 10.1016/0306-4522(92)90150-Z
DO - 10.1016/0306-4522(92)90150-Z
M3 - Article
C2 - 1372114
AN - SCOPUS:0026565491
SN - 0306-4522
VL - 46
SP - 631
EP - 641
JO - Neuroscience
JF - Neuroscience
IS - 3
ER -