Ultracataclasis, sintering, and frictional melting in pseudotachylytes from East Greenland

Daniel Curewitz, Jeffrey A. Karson

Research output: Contribution to journalArticlepeer-review

36 Scopus citations


Large volumes of pseudotachylyte (an intrusive, fault-related rock interpreted to form by a combination of cataclasis and melting) occur in Tertiary normal faults and accommodation zones along ~400 km of the East Greenland volcanic rifted margin. Analysis of representative pseudotachylyte samples reveals a wide range of mesoscopic and microscopic textures, mineralogies, and chemistries in the aphanitic pseudotachylyte matrix. Three distinct types of pseudotachylyte (referred to as angular, rounded and glassy) are identified based on these characteristics. Angular pseudotachylyte (found primarily in dike-like reservoir zones) is characterized by angular grains visible on all scales, with micron-scale fragments of mica and amphibole. Its matrix is enriched in Fe2O3, MgO, and TiO2 relative to the host rock, with minor increases in CaO, K2O, and small decreases in Na2O. Rounded pseudotachylyte is found in reservoir zones, injection veins (pseudotachylyte-filled extension fractures), and fault veins (small faults with pseudotachylyte along their surfaces). It is characterized by smooth-surfaced, compacted grains on microscopic scales, and encloses rounded, interpenetrative lithic clasts on outcrop scale. Its matrix is enriched in Fe2O3, MgO, TiO2, and Al2O3 relative to the host rock, with minor depletion in Na2O and K2O. Glassy pseudotachylyte is found primarily along fault surfaces. Its matrix is characterized by isotropic, conchoidally fractured material containing microscopic, strain-free amphibole phenocrysts, and is enriched in TiO2, Al2O3, K2O, Fe2O3, MgO, CaO, and Na2O relative to the host rock. These observations suggest that angular pseudotachylyte was produced by cataclasis, with enrichment in metallic oxides resulting from preferential crushing of mechanically weak amphibole and mica minerals found in the gneissic host rock. Cataclasis and concomitant frictional heating resulted in the textural and chemical modification of angular pseudotachylyte by sintering or melting, producing rounded and glassy pseudotachylyte, respectively. Compositional and textural observations constrain the temperatures reached during frictional heating (700-900°C) which in turn delimit the amount of frictional heat imparted to the pseudotachylytes during slip. Our results suggest that the East Greenland pseudotachylytes formed during small seismic events along faults at shallow crustal levels. Consistent relative ages and widespread occurrence of pseudotachylyte-bearing faults in East Greenland suggest that widespread microseismicity accompanied the early development of this volcanic rifted margin.

Original languageEnglish (US)
Pages (from-to)1693-1713
Number of pages21
JournalJournal of Structural Geology
Issue number12
StatePublished - Dec 1999
Externally publishedYes

ASJC Scopus subject areas

  • Geology


Dive into the research topics of 'Ultracataclasis, sintering, and frictional melting in pseudotachylytes from East Greenland'. Together they form a unique fingerprint.

Cite this