TY - GEN
T1 - Towards a semantic web approach for disassembly planning
AU - Zhu, Bicheng
AU - Roy, Utpal
N1 - Publisher Copyright:
Copyright © 2014 by ASME.
PY - 2014
Y1 - 2014
N2 - Disassembly, as one of the core steps in the End of Life (EOL) activities, has been a popular topic of research in both industrial and academic areas. It not only reduces product lifecycle cost, but also substantially influences environmental impact. Although different methods have been proposed for tackling different aspects of the disassembly planning problems, certain gaps still exist. For example, in the case of the disassembly sequencing, traditional methods focus mainly on the geometry and topology constraints, but omit the important technical constraints like force (gravity), connector type, etc.; it makes these methods less efficient and realistic. Also, the determination of an optimal disassembly sequence requires an extensive exchange and sharing of the disassembly related knowledge among the different stakeholders like manufacturers, product designers, maintenance staffs and material engineers. A mechanism to support such information interoperability is important in the disassembly process. In order to address those research issues, this paper proposes a Semantic Web based Disassembly Planning Framework. In the framework, the proposed "Disassembly Core Ontology" (DCO) serves as a formal, explicit information core for different users like product designer and disassembler. By exploiting the rich semantic knowledge (like gravity, connector type, etc.) that has been explicitly embedded in the proposed DCO, it has been demonstrated that the semantic web approach has potentials to address both efficiency-and interoperability-related issues in disassembly planning problems.
AB - Disassembly, as one of the core steps in the End of Life (EOL) activities, has been a popular topic of research in both industrial and academic areas. It not only reduces product lifecycle cost, but also substantially influences environmental impact. Although different methods have been proposed for tackling different aspects of the disassembly planning problems, certain gaps still exist. For example, in the case of the disassembly sequencing, traditional methods focus mainly on the geometry and topology constraints, but omit the important technical constraints like force (gravity), connector type, etc.; it makes these methods less efficient and realistic. Also, the determination of an optimal disassembly sequence requires an extensive exchange and sharing of the disassembly related knowledge among the different stakeholders like manufacturers, product designers, maintenance staffs and material engineers. A mechanism to support such information interoperability is important in the disassembly process. In order to address those research issues, this paper proposes a Semantic Web based Disassembly Planning Framework. In the framework, the proposed "Disassembly Core Ontology" (DCO) serves as a formal, explicit information core for different users like product designer and disassembler. By exploiting the rich semantic knowledge (like gravity, connector type, etc.) that has been explicitly embedded in the proposed DCO, it has been demonstrated that the semantic web approach has potentials to address both efficiency-and interoperability-related issues in disassembly planning problems.
KW - Data interoperability
KW - Disassembly
KW - Ontology
KW - Sustainability
UR - http://www.scopus.com/inward/record.url?scp=84961376139&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84961376139&partnerID=8YFLogxK
U2 - 10.1115/DETC201434793
DO - 10.1115/DETC201434793
M3 - Conference contribution
AN - SCOPUS:84961376139
T3 - Proceedings of the ASME Design Engineering Technical Conference
BT - 34th Computers and Information in Engineering Conference
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2014
Y2 - 17 August 2014 through 20 August 2014
ER -