Abstract
Quantitative modeling of crystallization histories using the program rhyolite-MELTS indicates that zircon crystallization in 1.0 to 1.2 Ga Grenville granitoids with Zr concentrations of 300-1200 ppm begins at 930-1000 °C, and always after onset of crystallization of most other phases (pyroxenes, feldspars, quartz, apatite, ilmenite). Zircon saturation temperatures, calculated from whole-rock compositions and Zr concentrations for modeled samples, range from 835 to 997 °C. Zircon in the two samples with the highest Zr (1201 and 829 ppm) analyzed by sensitive high-resolution ion microprobe (SHRIMP) yielded Ti contents of 10-77 ppm, corresponding to Ti-in-zircon temperatures as high as 1035 °C and 915 °C, respectively. These are among the highest Ti-in-zircon temperatures recorded in magmatic rocks. The modeling and SHRIMP data support the hypothesis that high-Zr Grenville granites are hot granites, and support tectonic models that invoke high-temperature (>900 °C) crustal conditions for generation of Grenville magmas.
Original language | English (US) |
---|---|
Pages (from-to) | 267-270 |
Number of pages | 4 |
Journal | Geology |
Volume | 42 |
Issue number | 3 |
DOIs | |
State | Published - 2014 |
ASJC Scopus subject areas
- Geology