Three-Dimensional Printing of Double-Network Hydrogels: Recent Progress, Challenges, and Future Outlook

Puskal Kunwar, Mark James Ransbottom, Pranav Soman

Research output: Contribution to journalReview articlepeer-review

2 Scopus citations

Abstract

Hydrogels are widely used materials due to their biocompatibility, their ability to mimic the hydrated and porous extracellular microenvironment, as well as their ability to tune both mechanical and biochemical properties. However, most hydrogels lack mechanical toughness, and shaping them into complicated three-dimensional (3D) structures remains challenging. In the past decade, tough and stretchable double-network hydrogels (DN gels) were developed for tissue engineering, soft robotics, and applications that require a combination of high-energy dissipation and large deformations. Although DN gels were processed into simple shapes by using conventional casting and molding methods, new 3D printing methods have enabled the shaping of DN gels into structurally complex 3D geometries. This review will describe the state-of-art technologies for shaping tough and stretchable DN gels into custom geometries by using conventional molding and casting, extrusion, and optics-based 3D printing, as well as the key challenges and future outlook in this field.

Original languageEnglish (US)
Pages (from-to)435-449
Number of pages15
Journal3D Printing and Additive Manufacturing
Volume9
Issue number5
DOIs
StatePublished - Oct 1 2022

Keywords

  • 3D printing
  • DLP printing
  • double-network hydrogel
  • extrusion printing
  • molding and casting

ASJC Scopus subject areas

  • Materials Science (miscellaneous)
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Three-Dimensional Printing of Double-Network Hydrogels: Recent Progress, Challenges, and Future Outlook'. Together they form a unique fingerprint.

Cite this