TY - JOUR
T1 - Three-dimensional folding of the triangular lattice
AU - Bowick, M.
AU - Di Francesco, P.
AU - Golinelli, O.
AU - Guitter, E.
N1 - Funding Information:
The research of M.B. was supported by the Department of Energy, USA, under contract No. DE-FG02-85ER40237. M.B. and E.G. are also grateful for support under NSF grant No. PHY89-04035 from the Institute for Theoretical Physics at Santa Barbara, where this work was initiated. We thank J.-M. Normand for a critical reading of the manuscript.
PY - 1995/9/18
Y1 - 1995/9/18
N2 - We study the folding of the regular triangular lattice in three-dimensional embedding space, a model for the crumpling of polymerised membranes. We consider a discrete model, where folds are either planar or form the angles of a regular octahedron. These "octahedral" folding rules correspond simply to a discretisation of the 3d embedding space as a Face Centred Cubic lattice. The model is shown to be equivalent to a 96-vertex model on the triangular lattice. The folding entropy per triangle ln q3d is evaluated numerically to be q3d = 1.43(1). Various exact bounds on q3d are derived.
AB - We study the folding of the regular triangular lattice in three-dimensional embedding space, a model for the crumpling of polymerised membranes. We consider a discrete model, where folds are either planar or form the angles of a regular octahedron. These "octahedral" folding rules correspond simply to a discretisation of the 3d embedding space as a Face Centred Cubic lattice. The model is shown to be equivalent to a 96-vertex model on the triangular lattice. The folding entropy per triangle ln q3d is evaluated numerically to be q3d = 1.43(1). Various exact bounds on q3d are derived.
UR - http://www.scopus.com/inward/record.url?scp=0000499212&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0000499212&partnerID=8YFLogxK
U2 - 10.1016/0550-3213(95)00290-9
DO - 10.1016/0550-3213(95)00290-9
M3 - Article
AN - SCOPUS:0000499212
SN - 0550-3213
VL - 450
SP - 463
EP - 494
JO - Nuclear Physics, Section B
JF - Nuclear Physics, Section B
IS - 3
ER -