Thermochronologic constraints on post‐Paleozoic tectonic evolution of the central Transantarctic Mountains, Antarctica

Research output: Contribution to journalArticle

87 Citations (Scopus)

Abstract

Built upon the roots of a compressive orogenic belt of late Proterozoic‐early Paleozoic age and once adjacent to North America, the present‐day Transantarctic Mountains (TAM) represent a rift flank, resulting from episodic uplift in the Cretaceous and Cenozoic. Fault blocks are discernible in present‐day topography and subglacial morphology. Fission track results give information on differential block movement (uplift and denudation) and are important in constraining models for the uplift of the range. Apatite fission track thermochronology on samples collected from the central TAM record a complex thermotectonic history for this region over the past 350 m.y. Apatite ages in the Miller Range vary from ∼250 to ∼350 Ma and are from an exhumed apatite partial annealing zone formed following cooling of Cambro‐Ordovician granitoids. A period of Cretaceous denudation (≲2 km), beginning at ∼115 Ma, is recorded at Moody Nunatak on the inland side of the TAM. Near the coast, samples along the Beardmore Glacier record rapid cooling indicative of denudation initiated in the early Cenozoic (∼50 Ma). The amount of uplift ∼70 km inland of the coast in the Queen Alexandra Range since the early Cenozoic is ∼7 km, with the likelihood of an additional ∼3 km at the coast. Eastward facing topographic escarpments in the Queen Alexandra Range mark the likely position of steeply dipping normal faults, which offset the apatite ages. Apatite ages on the east side of the Beardmore Glacier mouth are generally younger (average 27 Ma) than on the west side (average 33 Ma), reflecting greater denudation. Assumptions made regarding the use of an assumed paleogeothermal gradient are tested with available geologic evidence. The fission track data neither conflict with nor confirm paleobotanical evidence from the Sirius Group in the central TAM which suggests significant surface uplift (2–3 km) of the TAM since the Pliocene. Results build upon the available fission track database along the TAM and emphasize the subtle variability of uplift along the TAM due to episodic uplift involving differential block movements.

Original languageEnglish (US)
Pages (from-to)818-836
Number of pages19
JournalTectonics
Volume13
Issue number4
DOIs
StatePublished - 1994
Externally publishedYes

Fingerprint

Apatites
Antarctic regions
Tectonics
tectonic evolution
mountains
tectonics
uplift
apatites
apatite
denudation
mountain
Coastal zones
Glaciers
fission
coasts
glaciers
Cooling
coast
glacier
nunatak

ASJC Scopus subject areas

  • Geophysics
  • Geochemistry and Petrology

Cite this

@article{bf31f9225099479798a24790b1345bf0,
title = "Thermochronologic constraints on post‐Paleozoic tectonic evolution of the central Transantarctic Mountains, Antarctica",
abstract = "Built upon the roots of a compressive orogenic belt of late Proterozoic‐early Paleozoic age and once adjacent to North America, the present‐day Transantarctic Mountains (TAM) represent a rift flank, resulting from episodic uplift in the Cretaceous and Cenozoic. Fault blocks are discernible in present‐day topography and subglacial morphology. Fission track results give information on differential block movement (uplift and denudation) and are important in constraining models for the uplift of the range. Apatite fission track thermochronology on samples collected from the central TAM record a complex thermotectonic history for this region over the past 350 m.y. Apatite ages in the Miller Range vary from ∼250 to ∼350 Ma and are from an exhumed apatite partial annealing zone formed following cooling of Cambro‐Ordovician granitoids. A period of Cretaceous denudation (≲2 km), beginning at ∼115 Ma, is recorded at Moody Nunatak on the inland side of the TAM. Near the coast, samples along the Beardmore Glacier record rapid cooling indicative of denudation initiated in the early Cenozoic (∼50 Ma). The amount of uplift ∼70 km inland of the coast in the Queen Alexandra Range since the early Cenozoic is ∼7 km, with the likelihood of an additional ∼3 km at the coast. Eastward facing topographic escarpments in the Queen Alexandra Range mark the likely position of steeply dipping normal faults, which offset the apatite ages. Apatite ages on the east side of the Beardmore Glacier mouth are generally younger (average 27 Ma) than on the west side (average 33 Ma), reflecting greater denudation. Assumptions made regarding the use of an assumed paleogeothermal gradient are tested with available geologic evidence. The fission track data neither conflict with nor confirm paleobotanical evidence from the Sirius Group in the central TAM which suggests significant surface uplift (2–3 km) of the TAM since the Pliocene. Results build upon the available fission track database along the TAM and emphasize the subtle variability of uplift along the TAM due to episodic uplift involving differential block movements.",
author = "Fitzgerald, {Paul G}",
year = "1994",
doi = "10.1029/94TC00595",
language = "English (US)",
volume = "13",
pages = "818--836",
journal = "Tectonics",
issn = "0278-7407",
publisher = "American Geophysical Union",
number = "4",

}

TY - JOUR

T1 - Thermochronologic constraints on post‐Paleozoic tectonic evolution of the central Transantarctic Mountains, Antarctica

AU - Fitzgerald, Paul G

PY - 1994

Y1 - 1994

N2 - Built upon the roots of a compressive orogenic belt of late Proterozoic‐early Paleozoic age and once adjacent to North America, the present‐day Transantarctic Mountains (TAM) represent a rift flank, resulting from episodic uplift in the Cretaceous and Cenozoic. Fault blocks are discernible in present‐day topography and subglacial morphology. Fission track results give information on differential block movement (uplift and denudation) and are important in constraining models for the uplift of the range. Apatite fission track thermochronology on samples collected from the central TAM record a complex thermotectonic history for this region over the past 350 m.y. Apatite ages in the Miller Range vary from ∼250 to ∼350 Ma and are from an exhumed apatite partial annealing zone formed following cooling of Cambro‐Ordovician granitoids. A period of Cretaceous denudation (≲2 km), beginning at ∼115 Ma, is recorded at Moody Nunatak on the inland side of the TAM. Near the coast, samples along the Beardmore Glacier record rapid cooling indicative of denudation initiated in the early Cenozoic (∼50 Ma). The amount of uplift ∼70 km inland of the coast in the Queen Alexandra Range since the early Cenozoic is ∼7 km, with the likelihood of an additional ∼3 km at the coast. Eastward facing topographic escarpments in the Queen Alexandra Range mark the likely position of steeply dipping normal faults, which offset the apatite ages. Apatite ages on the east side of the Beardmore Glacier mouth are generally younger (average 27 Ma) than on the west side (average 33 Ma), reflecting greater denudation. Assumptions made regarding the use of an assumed paleogeothermal gradient are tested with available geologic evidence. The fission track data neither conflict with nor confirm paleobotanical evidence from the Sirius Group in the central TAM which suggests significant surface uplift (2–3 km) of the TAM since the Pliocene. Results build upon the available fission track database along the TAM and emphasize the subtle variability of uplift along the TAM due to episodic uplift involving differential block movements.

AB - Built upon the roots of a compressive orogenic belt of late Proterozoic‐early Paleozoic age and once adjacent to North America, the present‐day Transantarctic Mountains (TAM) represent a rift flank, resulting from episodic uplift in the Cretaceous and Cenozoic. Fault blocks are discernible in present‐day topography and subglacial morphology. Fission track results give information on differential block movement (uplift and denudation) and are important in constraining models for the uplift of the range. Apatite fission track thermochronology on samples collected from the central TAM record a complex thermotectonic history for this region over the past 350 m.y. Apatite ages in the Miller Range vary from ∼250 to ∼350 Ma and are from an exhumed apatite partial annealing zone formed following cooling of Cambro‐Ordovician granitoids. A period of Cretaceous denudation (≲2 km), beginning at ∼115 Ma, is recorded at Moody Nunatak on the inland side of the TAM. Near the coast, samples along the Beardmore Glacier record rapid cooling indicative of denudation initiated in the early Cenozoic (∼50 Ma). The amount of uplift ∼70 km inland of the coast in the Queen Alexandra Range since the early Cenozoic is ∼7 km, with the likelihood of an additional ∼3 km at the coast. Eastward facing topographic escarpments in the Queen Alexandra Range mark the likely position of steeply dipping normal faults, which offset the apatite ages. Apatite ages on the east side of the Beardmore Glacier mouth are generally younger (average 27 Ma) than on the west side (average 33 Ma), reflecting greater denudation. Assumptions made regarding the use of an assumed paleogeothermal gradient are tested with available geologic evidence. The fission track data neither conflict with nor confirm paleobotanical evidence from the Sirius Group in the central TAM which suggests significant surface uplift (2–3 km) of the TAM since the Pliocene. Results build upon the available fission track database along the TAM and emphasize the subtle variability of uplift along the TAM due to episodic uplift involving differential block movements.

UR - http://www.scopus.com/inward/record.url?scp=0028602901&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028602901&partnerID=8YFLogxK

U2 - 10.1029/94TC00595

DO - 10.1029/94TC00595

M3 - Article

AN - SCOPUS:0028602901

VL - 13

SP - 818

EP - 836

JO - Tectonics

JF - Tectonics

SN - 0278-7407

IS - 4

ER -