Thermally driven high-rate intercalated pseudocapacitance of flower-like architecture of ultrathin few layered δ-MnO2 nanosheets on carbon nano-onions

Shobhnath P. Gupta, Bhalchandra A. Kakade, Bhaskar R. Sathe, Quinn Qiao, Dattatray J. Late, Pravin S. Walke

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

The layered two-dimensional (L2D) nanostructures are greatly favorable electrode materials in electrochemical energy storage as a consequence of enhanced specific surface area and effective intercalation of ions. However, the realizations of uniform L2D structure with appropriate van der Waals gap and its three-dimensional architecture of a few-layered association enhance the accommodation of ions for superior supercapacitor. Temperature driven boost in the storage by compensating minor life span is highly noteworthy. Herein, we report a fascinating 3D architecture composed of L2D δ-MnO2 nanosheets decorated on carbon nano-onion (CNO) by a cost-effective, template-free, low-temperature chemical route. The temperature-driven electrochemical kinematics exhibits efficient charge storage capacity via intercalated pseudocapacitance. The specific capacitance was boosted from 147 F·g−1 to 321 F·g−1 with increasing temperature from 4 to 70 °C at 2 mV·s−1. Nevertheless, merely 25% stability retention has been forfeited up to 6000 cycles at high current density (5 A·g−1). Furthermore, the flexible asymmetric device (FAD) demonstrates a high operating voltage of 1.8 V and superior bendability via retention of 97% capacitance with the bending angles from 0° to 180°. The superior energy density of 49.5 Wh kg−1 and excellent stability of 89% up to 10 000 cycles are figures of merit of L2D δ-MnO2 nanosheets decorated on carbon nano-onion (CNO) electrode candidate for next-generation wearable energy storage devices.

Original languageEnglish (US)
Pages (from-to)11398-11409
Number of pages12
JournalACS Applied Energy Materials
Volume3
Issue number11
DOIs
StatePublished - Nov 23 2020
Externally publishedYes

Keywords

  • High-rate intercalation
  • Layered materials
  • Nanosheets
  • Pseudocapacitance
  • Pseudocapacitor

ASJC Scopus subject areas

  • Chemical Engineering (miscellaneous)
  • Energy Engineering and Power Technology
  • Materials Chemistry
  • Electrical and Electronic Engineering
  • Electrochemistry

Fingerprint

Dive into the research topics of 'Thermally driven high-rate intercalated pseudocapacitance of flower-like architecture of ultrathin few layered δ-MnO2 nanosheets on carbon nano-onions'. Together they form a unique fingerprint.

Cite this