Abstract
Thermalized elastic membranes without distant self-avoidance are believed to undergo a crumpling transition when the microscopic bending stiffness is comparable to kT, the scale of thermal fluctuations. Most potential physical realizations of such membranes have a bending stiffness well in excess of experimentally achievable temperatures and are therefore unlikely ever to access the crumpling regime. We propose a mechanism to tune the onset of the crumpling transition by altering the geometry and topology of the sheet itself. We carry out extensive molecular dynamics simulations of perforated sheets with a dense periodic array of holes and observe that the critical temperature is controlled by the total fraction of removed area, independent of the precise arrangement and size of the individual holes. The critical exponents for the perforated membrane are compatible with those of the standard crumpling transition.
Original language | English (US) |
---|---|
Article number | 1381 |
Journal | Nature Communications |
Volume | 8 |
Issue number | 1 |
DOIs | |
State | Published - Dec 1 2017 |
ASJC Scopus subject areas
- General Chemistry
- General Biochemistry, Genetics and Molecular Biology
- General Physics and Astronomy