The role of user profiles for fake news detection

Kai Shu, Xinyi Zhou, Suhang Wang, Reza Zafarani, Huan Liu

Research output: Chapter in Book/Entry/PoemConference contribution

166 Scopus citations

Abstract

Consuming news from social media is becoming increasingly popular. Social media appeals to users due to its fast dissemination of information, low cost, and easy access. However, social media also enables the widespread of fake news. Due to the detrimental societal effects of fake news, detecting fake news has attracted increasing attention. However, the detection performance only using news contents is generally not satisfactory as fake news is written to mimic true news. Thus, there is a need for an in-depth understanding on the relationship between user profiles on social media and fake news. In this paper, we study the problem of understanding and exploiting user profiles on social media for fake news detection. In an attempt to understand connections between user profiles and fake news, first, we measure users’ sharing behaviors and group representative users who are more likely to share fake and real news; then, we perform a comparative analysis of explicit and implicit profile features between these user groups, which reveals their potential to help differentiate fake news from real news. To exploit user profile features, we demonstrate the usefulness of these user profile features in a fake news classification task. We further validate the effectiveness of these features through feature importance analysis. The findings of this work lay the foundation for deeper exploration of user profile features of social media and enhance the capabilities for fake news detection.

Original languageEnglish (US)
Title of host publicationProceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2019
EditorsFrancesca Spezzano, Wei Chen, Xiaokui Xiao
PublisherAssociation for Computing Machinery, Inc
Pages436-439
Number of pages4
ISBN (Electronic)9781450368681
DOIs
StatePublished - Aug 27 2019
Externally publishedYes
Event11th IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2019 - Vancouver, Canada
Duration: Aug 27 2019Aug 30 2019

Publication series

NameProceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2019

Conference

Conference11th IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2019
Country/TerritoryCanada
CityVancouver
Period8/27/198/30/19

ASJC Scopus subject areas

  • Communication
  • Computer Networks and Communications
  • Information Systems and Management
  • Sociology and Political Science

Fingerprint

Dive into the research topics of 'The role of user profiles for fake news detection'. Together they form a unique fingerprint.

Cite this