The energetics of mercury adsorption on Cu(100)

P. A. Dowben, Y. J. Kime, C. W. Hutchings, Wei Li, G. Vidali

Research output: Contribution to journalArticlepeer-review

20 Scopus citations


We have investigated the adsorption of mercury overlayers on Cu(100) by atom beam scattering, low energy electron diffraction and angle resolved photoemission. From our data we have calculated the isosteric heats in the adsorbed Hg layer on Cu(100) and compared these with results obtained for mercury on Fe(100), W(100) and Ni(100). We observe changes in the isosteric heat of adsorption that can be associated with the ordering of a c(2 × 2) Hg overlayer phase and the transition from a c(2 × 2) overlayer to a c(4 × 4) overlayer. The isosteric heat of adsorption is 0.50 ± 0.07 eV/atom (48 ± 7 kJ/mol) at zero coverage and reaches a maximum of 0.73 ± 0.04 eV/atom (70 ± 4 kJ/mol). From a combination of ABS and LEED, the structures of the two equilibrium ordered phases of Hg on Cu(100) have been identified, as well as the structures of several non-equilibrium phases.

Original languageEnglish (US)
Pages (from-to)113-122
Number of pages10
JournalSurface Science
Issue number1-3
StatePublished - May 1 1990

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films
  • Materials Chemistry


Dive into the research topics of 'The energetics of mercury adsorption on Cu(100)'. Together they form a unique fingerprint.

Cite this