The effect of processing temperature and time on the structure and fracture characteristics of self-reinforced composite poly(methyl methacrylate)

D. D. Wright, J. L. Gilbert, E. P. Lautenschlager

Research output: Contribution to journalArticle

34 Scopus citations

Abstract

A novel material, self-reinforced composite poly(methyl methacrylate) (SRC-PMMA) has been previously developed in this laboratory. It consists of high-strength PMMA fibers embedded in a matrix of PMMA derived from the fibers. As a composite material, uniaxial SRC-PMMA has been shown to have greatly improved flexural, tensile, fracture toughness and fatigue properties when compared to unreinforced PMMA. Previous work examined one empirically defined processing condition. This work systematically examines the effect of processing time and temperature on the thermal properties, fracture toughness and fracture morphology of SRC-PMMA produced by a hot compaction method. Differential scanning calorimetry (DSC) shows that composites containing high amounts of retained molecular orientation exhibit both endothermic and exothermic peaks which depend on processing times and temperatures. An exothermic release of energy just above T(g) is related to the release of retained molecular orientation in the composites. This release of energy decreases linearly with increasing processing temperature or time for the range investigated. Fracture toughness results show a maximum fracture toughness of 3.18 MPa m(1/2) for samples processed for 65 min at 128°C. Optimal structure and fracture toughness are obtained in composites which have maximum interfiber bonding and minimal loss of molecular orientation. Composite fracture mechanisms are highly dependent on processing. Low processing times and temperatures result in more interfiber/matrix fracture, while higher processing times and temperatures result in higher ductility and more transfiber fracture. Excessive processing times result in brittle failure.

Original languageEnglish (US)
Pages (from-to)503-512
Number of pages10
JournalJournal of Materials Science: Materials in Medicine
Volume10
Issue number8
DOIs
StatePublished - Jan 1 1999

ASJC Scopus subject areas

  • Biophysics
  • Bioengineering
  • Biomaterials
  • Biomedical Engineering

Fingerprint Dive into the research topics of 'The effect of processing temperature and time on the structure and fracture characteristics of self-reinforced composite poly(methyl methacrylate)'. Together they form a unique fingerprint.

  • Cite this