The centrosome regulates the Rab11- dependent recycling endosome pathway at appendages of the mother centriole

Heidi Hehnly, Chun Ting Chen, Christine M. Powers, Hui Lin Liu, Stephen Doxsey

Research output: Contribution to journalArticle

70 Scopus citations

Abstract

The recycling endosome localizes to a pericentrosomal region via microtubule-dependent transport. We previously showed that Sec15, an effector of the recycling endosome component, Rab11-GTPase, interacts with the mother centriole appendage protein, centriolin, suggesting an interaction between endosomes and centrosomes [1, 2]. Here we show that the recycling endosome associates with the appendages of the mother (older) centriole. We show that two mother centriole appendage proteins, centriolin and cenexin/ODF2, regulate association of the endosome components Rab11, the Rab11 GTP-activating protein Evi5, and the exocyst at the mother centriole. Development of an in vitro method for reconstituting endosome protein complexes onto isolated membrane-free centrosomes demonstrates that purified GTP-Rab11 but not GDP-Rab11 binds to mother centriole appendages in the absence of membranes. Moreover, centriolin depletion displaces the centrosomal Rab11 GAP, Evi5, and increases mother-centriole-associated Rab11; depletion of Evi5 also increases centrosomal Rab11. This indicates that centriolin localizes Evi5 to centriolar appendages to turn off centrosomal Rab11 activity. Finally, centriolin depletion disrupts recycling endosome organization and function, suggesting a role for mother centriole proteins in the regulation of Rab11 localization and activity at the mother centriole.

Original languageEnglish (US)
Pages (from-to)1944-1950
Number of pages7
JournalCurrent Biology
Volume22
Issue number20
DOIs
StatePublished - Oct 23 2012

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Fingerprint Dive into the research topics of 'The centrosome regulates the Rab11- dependent recycling endosome pathway at appendages of the mother centriole'. Together they form a unique fingerprint.

  • Cite this