Taylor series of conformal mappings onto symmetric quadrilaterals

Loredana Lanzani, Jeanine L. Myers, Andrew S. Raich

Research output: Contribution to journalArticle

Abstract

We discuss the positivity (or lack thereof) of the non-vanishing coefficients of the Taylor series expansion about (Formula presented.) for the Riemann map of a family of rectangles and rhombi with defined symmetries.

Original languageEnglish (US)
Pages (from-to)1133-1141
Number of pages9
JournalComplex Variables and Elliptic Equations
Volume60
Issue number8
DOIs
StatePublished - Aug 3 2015

Fingerprint

Rhombus
Conformal mapping
Surjection
Taylor Series Expansion
Taylor series
Conformal Mapping
Positivity
Rectangle
Symmetry
Coefficient
Family

Keywords

  • Schwarz–Christoffel map
  • symmetry
  • Taylor series

ASJC Scopus subject areas

  • Analysis
  • Applied Mathematics
  • Computational Mathematics
  • Numerical Analysis

Cite this

Taylor series of conformal mappings onto symmetric quadrilaterals. / Lanzani, Loredana; Myers, Jeanine L.; Raich, Andrew S.

In: Complex Variables and Elliptic Equations, Vol. 60, No. 8, 03.08.2015, p. 1133-1141.

Research output: Contribution to journalArticle

Lanzani, Loredana ; Myers, Jeanine L. ; Raich, Andrew S. / Taylor series of conformal mappings onto symmetric quadrilaterals. In: Complex Variables and Elliptic Equations. 2015 ; Vol. 60, No. 8. pp. 1133-1141.
@article{c0e8aedca66440aa856bb847ec1c9ccc,
title = "Taylor series of conformal mappings onto symmetric quadrilaterals",
abstract = "We discuss the positivity (or lack thereof) of the non-vanishing coefficients of the Taylor series expansion about (Formula presented.) for the Riemann map of a family of rectangles and rhombi with defined symmetries.",
keywords = "Schwarz–Christoffel map, symmetry, Taylor series",
author = "Loredana Lanzani and Myers, {Jeanine L.} and Raich, {Andrew S.}",
year = "2015",
month = "8",
day = "3",
doi = "10.1080/17476933.2014.1001382",
language = "English (US)",
volume = "60",
pages = "1133--1141",
journal = "Complex Variables and Elliptic Equations",
issn = "1747-6933",
publisher = "Taylor and Francis Ltd.",
number = "8",

}

TY - JOUR

T1 - Taylor series of conformal mappings onto symmetric quadrilaterals

AU - Lanzani, Loredana

AU - Myers, Jeanine L.

AU - Raich, Andrew S.

PY - 2015/8/3

Y1 - 2015/8/3

N2 - We discuss the positivity (or lack thereof) of the non-vanishing coefficients of the Taylor series expansion about (Formula presented.) for the Riemann map of a family of rectangles and rhombi with defined symmetries.

AB - We discuss the positivity (or lack thereof) of the non-vanishing coefficients of the Taylor series expansion about (Formula presented.) for the Riemann map of a family of rectangles and rhombi with defined symmetries.

KW - Schwarz–Christoffel map

KW - symmetry

KW - Taylor series

UR - http://www.scopus.com/inward/record.url?scp=84929947935&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84929947935&partnerID=8YFLogxK

U2 - 10.1080/17476933.2014.1001382

DO - 10.1080/17476933.2014.1001382

M3 - Article

AN - SCOPUS:84929947935

VL - 60

SP - 1133

EP - 1141

JO - Complex Variables and Elliptic Equations

JF - Complex Variables and Elliptic Equations

SN - 1747-6933

IS - 8

ER -