TY - JOUR
T1 - System analysis of Phycomyces light-growth response with sum-of-sinusoids test stimuli
AU - Pratap, P.
AU - Palit, A.
AU - Lipson, E. D.
N1 - Funding Information:
This work was supported by grant GM29707 from the National Institutes of Health to Edward D. Lipson. Receivedfor publication 24 January 1986.
PY - 1986
Y1 - 1986
N2 - The light-growth response of Phycomyces has been studied with the sum-of-sinusoids method of nonlinear system identification (Victor, J.D., and R.M. Shapley, 1980, Biophys. J., 29:459). This transient response of the sporangiophore has been treated as a black-box system with one input (logarithm of the light intensity, I) and one output (elongation rate). The light intensity was modulated so that log I, as a function of time, was a sum of sinusoids. The log-mean intensity was 10(-4) W m-2 and the wavelength was 477 nm. The first- and second-order frequency kernels, which represent the linear and nonlinear behavior of the system, were obtained from the Fourier transform of the response at the appropriate component and combination frequencies. Although the first-order kernel accounts for most of the response, there remains a significant nonlinearity beyond the logarithmic transducer presumed to occur at the input of the sensory transduction chain. From the analysis of the frequency kernels, we have derived a dynamic nonlinear model of the light-growth response system. The model consists of a nonlinear subsystem followed by a linear subsystem. The model parameters were estimated from a combined nonlinear least-squares fit to the first- and second-order frequency kernels.
AB - The light-growth response of Phycomyces has been studied with the sum-of-sinusoids method of nonlinear system identification (Victor, J.D., and R.M. Shapley, 1980, Biophys. J., 29:459). This transient response of the sporangiophore has been treated as a black-box system with one input (logarithm of the light intensity, I) and one output (elongation rate). The light intensity was modulated so that log I, as a function of time, was a sum of sinusoids. The log-mean intensity was 10(-4) W m-2 and the wavelength was 477 nm. The first- and second-order frequency kernels, which represent the linear and nonlinear behavior of the system, were obtained from the Fourier transform of the response at the appropriate component and combination frequencies. Although the first-order kernel accounts for most of the response, there remains a significant nonlinearity beyond the logarithmic transducer presumed to occur at the input of the sensory transduction chain. From the analysis of the frequency kernels, we have derived a dynamic nonlinear model of the light-growth response system. The model consists of a nonlinear subsystem followed by a linear subsystem. The model parameters were estimated from a combined nonlinear least-squares fit to the first- and second-order frequency kernels.
UR - http://www.scopus.com/inward/record.url?scp=0022799053&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0022799053&partnerID=8YFLogxK
U2 - 10.1016/S0006-3495(86)83504-4
DO - 10.1016/S0006-3495(86)83504-4
M3 - Article
C2 - 3779003
AN - SCOPUS:0022799053
SN - 0006-3495
VL - 50
SP - 645
EP - 651
JO - Biophysical Journal
JF - Biophysical Journal
IS - 4
ER -