Synthesis, Structure, and Characterization of a Phenolate-Bridged Dimanganese(II) Complex of a Dinucleating Phenol Ligand

Yilma Gultneh, Amjad Farooq, Shuncheng Liu, Kenneth D. Karlin, Jon Zubieta

Research output: Contribution to journalArticlepeer-review

56 Scopus citations


The dinucleating phenol ligand LOH (LOH = 2, 6-bis((bis(2-(2-pyridyl)ethyl)amino)methyl)phenol (1)) is reacted with MnCIO4)2.6H2O in the presence of excess acetate anion and a base (NEt3) in methanol to produce the dinuclear Mnn2 complex [Mn2(LO)(OAc)2]ClO4 (5) which crystallizes in the monoclinic space group P21\n with unit cell dimensions a = 11.227 (3) k, b = 21.815 (8) Å c = 17.731 (7) Å α = 90.00 (3)°, β = 102.45 (3)°, and γ = 90.00 (3)°, with four molecules per unit cell. The structure shows that two acetate anions and a phenoxy oxygen bridge the manganese ions. The [Mn2(LO)(μ-OAc)2]+ cation has a noncrystallographic C2 axis with the two Mn(II) ions in a nearly equivalent distorted octahedron coordination environment. Cyclic voltammetry of 5 in acetonitrile shows a reversible peak at 0.73 V and an irreversible peak at 1.28 V (vs Ag/AgCl). The two redox potentials assigned to the MnII2/MnIIMn111 and the MnIIMnIII/MnIII2 redox processes are significantly higher than the potentials assigned to the same processes in the analogous but mixed-valent MnIIMnIII complexes showing that ligand 1 stabilizes the lower oxidation states. This is attributed to the six-membered chelate rings in 5 vs five-membered rings found in the mixed-valent complexes. Complex 5 is the first example of a structurally characterized stable discrete dinuclear MnII2 complex in this series of analogous complexes. The EPR spectrum of the crystals of 5 at 77 K shows six peaks with no hyperfine structures whereas in DMF/methanol frozen glass it shows a set of six peaks centered near g = 2 with an 11-line hyperfine structure (J = 43 G) superimposed and observable on the two lower field peaks. The hyperfine structure is attributed to the isotropic coupling to the nuclei of the two equivalent Mn(II) ions (total nuclear spin = 5. A peak for the ΔMs = 2 forbidden transition at half-field and two outer flanking peaks are also observed. A superimposed six-peak hyperfine structure observed at g = 2 (J = 80 G) is due to impurity caused by monomeric Mn(II) species.

Original languageEnglish (US)
Pages (from-to)3607-3611
Number of pages5
JournalInorganic Chemistry
Issue number17
StatePublished - Aug 1 1992

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Inorganic Chemistry


Dive into the research topics of 'Synthesis, Structure, and Characterization of a Phenolate-Bridged Dimanganese(II) Complex of a Dinucleating Phenol Ligand'. Together they form a unique fingerprint.

Cite this