TY - JOUR
T1 - Synthesis and Structural Characterization of Lithium Thiolates
T2 - Dependence of Association and Aggregation on Donor Hapticity and Ligand Size and Synthesis of the First Trimeric Lithium Thiolate [Li(THF)SR]3 and the Solvent-Separated Ion Pair [Li(12-crown-4)2][SR] (R = 2,4,6-tBu3C6H2)1
AU - Ruhlandt-Senge, Karin
AU - Englich, Ulrich
AU - Senge, Mathias O.
AU - Chadwick, Scott
PY - 1996
Y1 - 1996
N2 - The synthesis and structural characterization of several lithium thiolates are reported. Formation of discrete species can be achieved by careful variation of ligand size and donor hapticity, as exemplified by the monomeric formulation of Li(PMDTA)STrityl (PMDTA = N,N,N',N'',N''-pentamethyldiethylenetriamine, Trityl = CPh3), 1, and Li-(PMDTA)STrip, 2 (Trip = 2,4,6-iPr3C6H2), versus the dimeric species [Li(THF)2STrityl]2, 3, and [Li(TMEDA)-STrip]2, 4 (TMEDA = N,N,N'N'-tetramethylethylenediamine). By control of the stoichiometry of the donor, the first trimeric lithium thiolate [Li(THF)SMes*]3, 5 (Mes* = 2,4,6-tBu3C6H2), exhibiting a six-membered ring system and rare three-coordinate lithium centers, becomes available. In contrast, use of a crown ether leads to the isolation of the monomeric contact ion pair Li(12-crown-4)STrityl, 6, while employing the cumbersome - SMes* ligand allows for the isolation of the first solvent-separated lithium thiolate [Li(12-crown-4)2][SMes*], 7. All compounds were prepared by reacting the respective thiols with nBuLi in the presence of various donor adjuncts. The target molecules were characterized using 1H NMR and IR spectroscopy and melting point criteria. Crystal structure analysis was employed to determine solid state structures. Crystal data are as follows. 1: Cu Kα (λ = 1.541 78 Å) at 130 K, a = 12.152(3) Å, b = 15.260(3) Å, c = 14.764(5) Å, β = 106.90(2)°, V = 2619.6(12) Å3, Z = 4, monoclinic, space group P21/c, 2526 reflections (I > 2σ(I)), R = 0.064. 2: Cu Kα (λ = 1.541 78 Å) at 228 K, a = 15.805(7) Å, b = 9.206(4) Å, c = 18.923(7) Å, β= 99.74(3)̊, V = 2714(2) Å3, Z = 4, monoclinic, space group P21/n, 2047 reflections (I > 2σ(I)), R = 0.085. 3: Mo Kα (λ = 0.710 73 Å) at 213 K, a = 13.141(3) A, b = 12.381(2) Å, c = 14.664(3) Å, β = 94.84(3)°, V = 2377.3(8) Å3, Z = 2, monoclinic, space group P21/n, 2622 reflections (I > 2σ(I)), R = 0.052. 4: Cu Kα (λ = 1.541 78 Å) at 130 K, a = 18.906(4) Å, b = 9.516(2) Å, c = 25.617(5) Å, β = 92.75(3)°, V = 4603(2) Å3, Z = 4, monoclinic, space group I2/a, 2390 reflections (I > 2σ(I)), R = 0.067. 5: Mo Kα (λ = 0.710 73 Å) at 213 K, a = 9.991(2) Å, b = 17.934(4) Å, c = 20.314(4) Å, α = 83.36(3)°, β= 76.74(3)°, γ = 76.72(3)°, V = 3440.4(12) Å3, Z = 2, triclinic, space group P1, 6397 reflections (I > 2.5σ(I)), R = 0.063, 6: Mo Kα (λ = 0.710 73 Å) at 213 K, a = 10.542(2) Å, b = 12.821(3) Å, c = 18.729(4) Å, β = 102.22(3)°, V = 2474.0(9) Å3, Z = 4, monoclinic, space group P21/c, 4206 reflections (I > 2σ(I)), R = 0.086. 7: Mo Kα (λ = 0.710 73 Å) at 213 K, a = 10.134(2) Å, b= 19.800(4) Å, c = 18.423(4) Å, β = 93.15(3)°, V = 3691.0(13) Å3, Z = 4, monoclinic, space group P21/n, 4088 reflections (I > 2σ(I)), R = 0.092.
AB - The synthesis and structural characterization of several lithium thiolates are reported. Formation of discrete species can be achieved by careful variation of ligand size and donor hapticity, as exemplified by the monomeric formulation of Li(PMDTA)STrityl (PMDTA = N,N,N',N'',N''-pentamethyldiethylenetriamine, Trityl = CPh3), 1, and Li-(PMDTA)STrip, 2 (Trip = 2,4,6-iPr3C6H2), versus the dimeric species [Li(THF)2STrityl]2, 3, and [Li(TMEDA)-STrip]2, 4 (TMEDA = N,N,N'N'-tetramethylethylenediamine). By control of the stoichiometry of the donor, the first trimeric lithium thiolate [Li(THF)SMes*]3, 5 (Mes* = 2,4,6-tBu3C6H2), exhibiting a six-membered ring system and rare three-coordinate lithium centers, becomes available. In contrast, use of a crown ether leads to the isolation of the monomeric contact ion pair Li(12-crown-4)STrityl, 6, while employing the cumbersome - SMes* ligand allows for the isolation of the first solvent-separated lithium thiolate [Li(12-crown-4)2][SMes*], 7. All compounds were prepared by reacting the respective thiols with nBuLi in the presence of various donor adjuncts. The target molecules were characterized using 1H NMR and IR spectroscopy and melting point criteria. Crystal structure analysis was employed to determine solid state structures. Crystal data are as follows. 1: Cu Kα (λ = 1.541 78 Å) at 130 K, a = 12.152(3) Å, b = 15.260(3) Å, c = 14.764(5) Å, β = 106.90(2)°, V = 2619.6(12) Å3, Z = 4, monoclinic, space group P21/c, 2526 reflections (I > 2σ(I)), R = 0.064. 2: Cu Kα (λ = 1.541 78 Å) at 228 K, a = 15.805(7) Å, b = 9.206(4) Å, c = 18.923(7) Å, β= 99.74(3)̊, V = 2714(2) Å3, Z = 4, monoclinic, space group P21/n, 2047 reflections (I > 2σ(I)), R = 0.085. 3: Mo Kα (λ = 0.710 73 Å) at 213 K, a = 13.141(3) A, b = 12.381(2) Å, c = 14.664(3) Å, β = 94.84(3)°, V = 2377.3(8) Å3, Z = 2, monoclinic, space group P21/n, 2622 reflections (I > 2σ(I)), R = 0.052. 4: Cu Kα (λ = 1.541 78 Å) at 130 K, a = 18.906(4) Å, b = 9.516(2) Å, c = 25.617(5) Å, β = 92.75(3)°, V = 4603(2) Å3, Z = 4, monoclinic, space group I2/a, 2390 reflections (I > 2σ(I)), R = 0.067. 5: Mo Kα (λ = 0.710 73 Å) at 213 K, a = 9.991(2) Å, b = 17.934(4) Å, c = 20.314(4) Å, α = 83.36(3)°, β= 76.74(3)°, γ = 76.72(3)°, V = 3440.4(12) Å3, Z = 2, triclinic, space group P1, 6397 reflections (I > 2.5σ(I)), R = 0.063, 6: Mo Kα (λ = 0.710 73 Å) at 213 K, a = 10.542(2) Å, b = 12.821(3) Å, c = 18.729(4) Å, β = 102.22(3)°, V = 2474.0(9) Å3, Z = 4, monoclinic, space group P21/c, 4206 reflections (I > 2σ(I)), R = 0.086. 7: Mo Kα (λ = 0.710 73 Å) at 213 K, a = 10.134(2) Å, b= 19.800(4) Å, c = 18.423(4) Å, β = 93.15(3)°, V = 3691.0(13) Å3, Z = 4, monoclinic, space group P21/n, 4088 reflections (I > 2σ(I)), R = 0.092.
UR - http://www.scopus.com/inward/record.url?scp=0000840064&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0000840064&partnerID=8YFLogxK
U2 - 10.1021/ic960375e
DO - 10.1021/ic960375e
M3 - Article
AN - SCOPUS:0000840064
SN - 0020-1669
VL - 35
SP - 5820
EP - 5827
JO - Inorganic Chemistry
JF - Inorganic Chemistry
IS - 20
ER -