TY - JOUR
T1 - Sutured Khovanov homology, hochschild homology, and the Ozsváth-Szabó spectral sequence
AU - Auroux, Denis
AU - Elisenda Grigsby, J.
AU - Wehrli, Stephan M.
N1 - Publisher Copyright:
© 2015 American Mathematical Society.
PY - 2015/8/13
Y1 - 2015/8/13
N2 - In 2002, Khovanov-Seidel constructed a faithful action of the (m+1)–strand braid group, ʤm+1, on the derived category of left modules over a quiver algebra, Am. We interpret the Hochschild homology of the Khovanov-Seidel braid invariant as a direct summand of the sutured Khovanov homology of the annular braid closure.
AB - In 2002, Khovanov-Seidel constructed a faithful action of the (m+1)–strand braid group, ʤm+1, on the derived category of left modules over a quiver algebra, Am. We interpret the Hochschild homology of the Khovanov-Seidel braid invariant as a direct summand of the sutured Khovanov homology of the annular braid closure.
UR - http://www.scopus.com/inward/record.url?scp=84939180115&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84939180115&partnerID=8YFLogxK
U2 - 10.1090/S0002-9947-2015-06252-7
DO - 10.1090/S0002-9947-2015-06252-7
M3 - Article
AN - SCOPUS:84939180115
SN - 0002-9947
VL - 367
SP - 7103
EP - 7131
JO - Transactions of the American Mathematical Society
JF - Transactions of the American Mathematical Society
IS - 10
ER -