Sutured Khovanov homology, hochschild homology, and the Ozsváth-Szabó spectral sequence

Denis Auroux, J. Elisenda Grigsby, Stephan M. Wehrli

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

In 2002, Khovanov-Seidel constructed a faithful action of the (m+1)–strand braid group, ʤm+1, on the derived category of left modules over a quiver algebra, Am. We interpret the Hochschild homology of the Khovanov-Seidel braid invariant as a direct summand of the sutured Khovanov homology of the annular braid closure.

Original languageEnglish (US)
Pages (from-to)7103-7131
Number of pages29
JournalTransactions of the American Mathematical Society
Volume367
Issue number10
DOIs
StatePublished - Aug 13 2015

ASJC Scopus subject areas

  • General Mathematics
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Sutured Khovanov homology, hochschild homology, and the Ozsváth-Szabó spectral sequence'. Together they form a unique fingerprint.

Cite this