Abstract
Onondaga Lake is a hypereutrophic, industrially polluted lake located in Syracuse, NY. High hypolimnetic concentrations of H2S that develop after anoxia restrict the accumulation of total Fe2+ due to the formation of FeS, and may limit Fe-PO4 interactions. High water column concentrations of Ca2+ and high rates of CaCO3 deposition occur due to inputs of Ca2+ from an adjacent soda ash manufacturing facility. Patterns of P concentration and other water chemistry parameters in the lower waters, and results from chemical equilibrium calculations, suggest that Ca-PO4 minerals may regulate the supply of P from sediments to the water column in Onondaga Lake. These findings have important management implications for Onondaga Lake. First, declines in water column Ca2+ concentrations due to reductions in industrial CaCl2 input may result in conditions of undersaturation with respect to Ca-PO4 mineral solubility and increases in the release of P from sediments to the water column. Second, introduction of O2 from hypolimnetic oxygenation, as a lake remediation initiative, may enhance P supply from sediments, because of increased solubility of Ca-PO4 minerals at lower pH.
Original language | English (US) |
---|---|
Pages (from-to) | 61-72 |
Number of pages | 12 |
Journal | Hydrobiologia |
Volume | 253 |
Issue number | 1-3 |
DOIs | |
State | Published - Mar 1993 |
Keywords
- calcium
- lake management
- phosphorus
- sediments
ASJC Scopus subject areas
- Aquatic Science