TY - PAT
T1 - Supercritical Diesel Fuel Composition, Combustion Process and Fuel System
AU - Anitescu, Gheorghe
AU - Tavlarides, Lawrence L.
PY - 2006/5/25
Y1 - 2006/5/25
N2 - An embodiment of the invention is a composition of diesel, biodiesel or blended fuel (DF) with exhaust gas (EG) mixtures or with liquid CO2. The composition is in a liquid state near the supercritical region or a supercritical fluid mixture such that it quasi-instantaneously diffuses into the compressed and hot air as a single and homogeneous supercritical phase upon injection in a combustion chamber. Suitable temperatures and pressures are greater than about 300° C. and 100 bar, and the mole fraction of EG or CO2(XEG or XCO2) in DF is in the range of 0.0-0.9. In a combustion process embodiment, composition embodiments are injected into a combustion chamber under supercritical conditions. The content of EG or CO2 in DF can be controlled as a function of engine operating parameters such as rpm and load. The thermodynamic and transport properties of supercritical DF-EG or DF-CO2 compositions can be more easily tuned and controlled than subcritical two-phase compositions. Delivery of the DF-EG or DF-CO2 composition into the combustion chamber as a homogeneous isotropic single-phase composition provides a significant increase in engine efficiency. Combustion process and fuel system embodiments of the invention provide an improved composition process with reduced formation of particulate matter (PM), aldehydes, polyaromatic hydrocarbons (PAHs), CO, NOx, and SOx.
AB - An embodiment of the invention is a composition of diesel, biodiesel or blended fuel (DF) with exhaust gas (EG) mixtures or with liquid CO2. The composition is in a liquid state near the supercritical region or a supercritical fluid mixture such that it quasi-instantaneously diffuses into the compressed and hot air as a single and homogeneous supercritical phase upon injection in a combustion chamber. Suitable temperatures and pressures are greater than about 300° C. and 100 bar, and the mole fraction of EG or CO2(XEG or XCO2) in DF is in the range of 0.0-0.9. In a combustion process embodiment, composition embodiments are injected into a combustion chamber under supercritical conditions. The content of EG or CO2 in DF can be controlled as a function of engine operating parameters such as rpm and load. The thermodynamic and transport properties of supercritical DF-EG or DF-CO2 compositions can be more easily tuned and controlled than subcritical two-phase compositions. Delivery of the DF-EG or DF-CO2 composition into the combustion chamber as a homogeneous isotropic single-phase composition provides a significant increase in engine efficiency. Combustion process and fuel system embodiments of the invention provide an improved composition process with reduced formation of particulate matter (PM), aldehydes, polyaromatic hydrocarbons (PAHs), CO, NOx, and SOx.
M3 - Patent
M1 - 7,488,357
ER -