TY - JOUR
T1 - 89Zr-Cobalamin PET Tracer
T2 - Synthesis, cellular uptake, and use for tumor imaging
AU - Kuda-Wedagedara, Akhila N.W.
AU - Workinger, Jayme L.
AU - Nexo, Ebba
AU - Doyle, Robert P.
AU - Viola-Villegas, Nerissa
N1 - Publisher Copyright:
© 2017 American Chemical Society.
PY - 2017/10/31
Y1 - 2017/10/31
N2 - Vitamin B12, or cobalamin (Cbl), is an essential nutrient. Acquisition, transport, and cellular internalization of Cbl are dependent on specific binding proteins and associated receptors. The circulating transport protein transcobalamin (TC) promotes cellular uptake via binding to specific receptors such as CD320, a receptor upregulated in several cancer cell lines. In this study, we report the successful synthesis of 89Zirconium-labeled Cbl that was derivatized with desferrioxamine (89Zr-Cbl). We document the purity of the tracer and its binding to TC compared with that of unmodified cyano-Cbl (CN-Cbl). In vitro studies employing the CD320 receptorpositive breast cancer cell line MDA-MB-453 showed a 6- to 10-fold greater uptake of 89Zr-Cbl when compared with the uptake in the presence of 200-fold excess of CN-Cbl at 37 °C. We used nude mice with MDA-MB-453 tumors to study the feasibility of employing the tracer to visualize CD320 positive tumors. In vivo positron emission tomography images displayed a clear visualization of the tumor with 1.42 - 0.48 %ID/g uptake (n = 3) at 4 h after injection (p.i.) with the tracer retained at 48 h p.i. Ex vivo biodistribution studies using 89Zr-Cbl exhibited the highest uptake in kidney and liver at 48 h p.i. Results document the feasibility of synthesizing a Cbl-based tracer suitable for both in vivo and ex vivo studies of Cbl trafficking and with the potential to visualize tumors expressing TC receptors, such as CD320.
AB - Vitamin B12, or cobalamin (Cbl), is an essential nutrient. Acquisition, transport, and cellular internalization of Cbl are dependent on specific binding proteins and associated receptors. The circulating transport protein transcobalamin (TC) promotes cellular uptake via binding to specific receptors such as CD320, a receptor upregulated in several cancer cell lines. In this study, we report the successful synthesis of 89Zirconium-labeled Cbl that was derivatized with desferrioxamine (89Zr-Cbl). We document the purity of the tracer and its binding to TC compared with that of unmodified cyano-Cbl (CN-Cbl). In vitro studies employing the CD320 receptorpositive breast cancer cell line MDA-MB-453 showed a 6- to 10-fold greater uptake of 89Zr-Cbl when compared with the uptake in the presence of 200-fold excess of CN-Cbl at 37 °C. We used nude mice with MDA-MB-453 tumors to study the feasibility of employing the tracer to visualize CD320 positive tumors. In vivo positron emission tomography images displayed a clear visualization of the tumor with 1.42 - 0.48 %ID/g uptake (n = 3) at 4 h after injection (p.i.) with the tracer retained at 48 h p.i. Ex vivo biodistribution studies using 89Zr-Cbl exhibited the highest uptake in kidney and liver at 48 h p.i. Results document the feasibility of synthesizing a Cbl-based tracer suitable for both in vivo and ex vivo studies of Cbl trafficking and with the potential to visualize tumors expressing TC receptors, such as CD320.
UR - http://www.scopus.com/inward/record.url?scp=85032641889&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85032641889&partnerID=8YFLogxK
U2 - 10.1021/acsomega.7b01180
DO - 10.1021/acsomega.7b01180
M3 - Article
AN - SCOPUS:85032641889
SN - 2470-1343
VL - 2
SP - 6314
EP - 6320
JO - ACS Omega
JF - ACS Omega
IS - 10
ER -