Subjamming transition in binary sphere mixtures

Ishan Prasad, Christian Santangelo, Gregory Grason

Research output: Contribution to journalArticlepeer-review

19 Scopus citations


We study the influence of particle-size asymmetry on structural evolution of randomly jammed binary sphere mixtures with varying large-sphere and small-sphere composition. Simulations of jammed packings are used to assess the transition from large-sphere dominant to small-sphere dominant mixtures. For weakly asymmetric particle sizes, packing properties evolve smoothly, but not monotonically, with increasing small-sphere composition, f. Our simulations reveal that at high values of ratio α of large- to small-sphere radii (α≥αc≈5.75), evolution of structural properties, such as packing density, fraction of jammed spheres, and contact statistics with f, exhibit features that suggest a sharp transition, either through discontinuities in structural measures or their derivatives. We argue that this behavior is related to the singular, composition dependence of close-packing fraction predicted in infinite aspect ratio mixtures α→ by the Furnas model, but occurring for finite valued range of α above a critical value, αc≈5.75. The existence of a sharp transition from small- to large-f values for α≥αc can be attributed to the existence of a subjamming transition of small spheres within the interstices of jammed large spheres along the line of compositions fsub(α). We argue that the critical value of finite-size asymmetry αc≃5.75 is consistent with the geometric criterion for the transmission of small-sphere contacts between neighboring tetrahedrally close-packed interstices of large spheres, facilitating a cooperative subjamming transition of small spheres confined within the disjoint volumes.

Original languageEnglish (US)
Article number052905
JournalPhysical Review E
Issue number5
StatePublished - Nov 20 2017
Externally publishedYes

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics


Dive into the research topics of 'Subjamming transition in binary sphere mixtures'. Together they form a unique fingerprint.

Cite this