Study of the doubly charmed tetraquark Tcc+

LHCb Collaboration

Research output: Contribution to journalArticlepeer-review

92 Scopus citations

Abstract

Quantum chromodynamics, the theory of the strong force, describes interactions of coloured quarks and gluons and the formation of hadronic matter. Conventional hadronic matter consists of baryons and mesons made of three quarks and quark-antiquark pairs, respectively. Particles with an alternative quark content are known as exotic states. Here a study is reported of an exotic narrow state in the D0D0π+ mass spectrum just below the D*+D0 mass threshold produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The state is consistent with the ground isoscalar Tcc+ tetraquark with a quark content of c c u ¯ d ¯ and spin-parity quantum numbers JP = 1+. Study of the DD mass spectra disfavours interpretation of the resonance as the isovector state. The decay structure via intermediate off-shell D*+ mesons is consistent with the observed D0π+ mass distribution. To analyse the mass of the resonance and its coupling to the D*D system, a dedicated model is developed under the assumption of an isoscalar axial-vector Tcc+ state decaying to the D*D channel. Using this model, resonance parameters including the pole position, scattering length, effective range and compositeness are determined to reveal important information about the nature of the Tcc+ state. In addition, an unexpected dependence of the production rate on track multiplicity is observed.

Original languageEnglish (US)
Article number3351
JournalNature Communications
Volume13
Issue number1
DOIs
StatePublished - Dec 2022

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Study of the doubly charmed tetraquark Tcc+'. Together they form a unique fingerprint.

Cite this