Storage stability of biodegradable polyethylene glycol microspheres

Era Jain, Saahil Sheth, Kristen Polito, Scott A. Sell, Silviya P. Zustiak

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


Degradable hydrogel microspheres are popular choices for multiple biomedical applications, including drug, protein, or cell carriers for minimally invasive delivery. Clinical transitioning of such new, sensitive pharmaceutical preparations requires investigation of storage methods that retain key properties for extended time. In this study, we sought to determine the influence of seven common storage conditions on the physical and mechanical properties of degradable polyethylene glycol (PEG) hydrogel microspheres: 25 °C, 4 °C, -80 °C, lyophilization/-20 °C, dimethyl sulfoxide/-80 °C, dimethyl sulfoxide/lyophilization/-20 °C, vacuum/-20 °C. We have outlined the storage conditions in detail and explained their effect on swelling ratio, stiffness and degradation rate post-storage. Additionally, we have implemented protein-loaded hydrogels to evaluate the effect of storage conditions on diffusivity as well as protein stability post-storage. We found that hydrogels could be stored short-term (1-4 d) under moist conditions (i.e. storage without drying) without a substantial loss of properties. For extended storage (7-28 d), they could be stored either at -80 °C (moist condition) or vacuum drying (dry condition).

Original languageEnglish (US)
Article number105403
JournalMaterials Research Express
Issue number10
StatePublished - Oct 2017
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Surfaces, Coatings and Films
  • Polymers and Plastics
  • Metals and Alloys


Dive into the research topics of 'Storage stability of biodegradable polyethylene glycol microspheres'. Together they form a unique fingerprint.

Cite this