Abstract
This paper presents an efficient data-driven building electricity management system that integrates a battery energy storage (BES) and photovoltaic panels to support decision-making capabilities. In this micro-grid (MG) system, solar panels and power grid supply the electricity to the building and the BES acts as a buffer to alleviate the uncertain effects of solar energy generation and the demands of the building. In this study, we formulate the problem as a Markov decision process and model the uncertainties in the MG system, using martingale model of forecast evolution method. To control the system, lookahead policies with deterministic/stochastic forecasts are implemented. In addition, wait-and-see, greedy and updated greedy policies are used to benchmark the performance of lookahead policies. Furthermore, by varying the charging/discharging rate, we obtain the different battery size (Es) and transmission line power capacity (Pmax) accordingly, and then we investigate how the different Es and Pmax affect the performance of control policies. The numerical experiments demonstrate that the lookahead policy with stochastic forecasts performs better than the lookahead policy with deterministic forecasts when the Es and Pmax are large enough, and the lookahead policies outperform the greedy and updated policies in all case studies.
Original language | English (US) |
---|---|
Pages (from-to) | 197-216 |
Number of pages | 20 |
Journal | Annals of Operations Research |
Volume | 303 |
Issue number | 1-2 |
DOIs | |
State | Published - Aug 2021 |
Externally published | Yes |
Keywords
- Building
- Control
- Lookahead policies
- Micro-grid
ASJC Scopus subject areas
- Decision Sciences(all)
- Management Science and Operations Research
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Stochastic control of a micro-grid using battery energy storage in solar-powered buildings'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
In: Annals of Operations Research, Vol. 303, No. 1-2, 08.2021, p. 197-216.
Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Stochastic control of a micro-grid using battery energy storage in solar-powered buildings
AU - Chen, Ying
AU - Castillo-Villar, Krystel K.
AU - Dong, Bing
N1 - Funding Information: This Project and the preparation of this publication were funded in part by monies provided by CPS. Energy through an agreement with The University of Texas at San Antonio. © CPS Energy and the University of Texas at San Antonio. E M P t \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ EMP_{t} $$\end{document} Electricity market price at time period t \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t $$\end{document} ($/kWh) D t \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ D_{t} $$\end{document} Total demand at time period t \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t $$\end{document} (kW) g t + \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ g_{t}^{ + } $$\end{document} Power bought from the main grid at time period t \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t $$\end{document} (kW) g t - \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ g_{t}^{ - } $$\end{document} Power from solar panels sold to the grid at time period t \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t $$\end{document} (kW) T Total time periods δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \delta $$\end{document} Yearly capital recovery factor a Battery equivalent capital cost with respect to energy size ($/kWh) cr Battery charge upper limit b Battery equivalent capital cost with respect to power size in $/kW Δ T \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta T $$\end{document} Time step size I t \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ I_{t} $$\end{document} Inventory level of the battery at time period t \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t $$\end{document} (kWh) D 2 t \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ D2_{t} $$\end{document} Demand satisfied by the battery at time period t \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t $$\end{document} (kW) R t \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R_{t} $$\end{document} Electricity from the battery sold back to the grid at time period t \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t $$\end{document} (kW) B C t \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ BC_{t} $$\end{document} Amount of electricity increased in the battery due to charging at time period t \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t $$\end{document} (kW) P V t \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ PV_{t} $$\end{document} Solar power generation at time period t \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t $$\end{document} (kW) P max \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ P_{max} $$\end{document} Power capacity limit of the HVDC transmission system (kW) e Battery storage efficiency dc Battery discharge rate E s \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ E_{s} $$\end{document} Battery storage size (kWh) n \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ n $$\end{document} Total years of the battery usage life Funding Information: This Project and the preparation of this publication were funded in part by monies provided by CPS. Energy through an agreement with The University of Texas at San Antonio. ? CPS Energy and the University of Texas at San Antonio. Publisher Copyright: © 2019, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2021/8
Y1 - 2021/8
N2 - This paper presents an efficient data-driven building electricity management system that integrates a battery energy storage (BES) and photovoltaic panels to support decision-making capabilities. In this micro-grid (MG) system, solar panels and power grid supply the electricity to the building and the BES acts as a buffer to alleviate the uncertain effects of solar energy generation and the demands of the building. In this study, we formulate the problem as a Markov decision process and model the uncertainties in the MG system, using martingale model of forecast evolution method. To control the system, lookahead policies with deterministic/stochastic forecasts are implemented. In addition, wait-and-see, greedy and updated greedy policies are used to benchmark the performance of lookahead policies. Furthermore, by varying the charging/discharging rate, we obtain the different battery size (Es) and transmission line power capacity (Pmax) accordingly, and then we investigate how the different Es and Pmax affect the performance of control policies. The numerical experiments demonstrate that the lookahead policy with stochastic forecasts performs better than the lookahead policy with deterministic forecasts when the Es and Pmax are large enough, and the lookahead policies outperform the greedy and updated policies in all case studies.
AB - This paper presents an efficient data-driven building electricity management system that integrates a battery energy storage (BES) and photovoltaic panels to support decision-making capabilities. In this micro-grid (MG) system, solar panels and power grid supply the electricity to the building and the BES acts as a buffer to alleviate the uncertain effects of solar energy generation and the demands of the building. In this study, we formulate the problem as a Markov decision process and model the uncertainties in the MG system, using martingale model of forecast evolution method. To control the system, lookahead policies with deterministic/stochastic forecasts are implemented. In addition, wait-and-see, greedy and updated greedy policies are used to benchmark the performance of lookahead policies. Furthermore, by varying the charging/discharging rate, we obtain the different battery size (Es) and transmission line power capacity (Pmax) accordingly, and then we investigate how the different Es and Pmax affect the performance of control policies. The numerical experiments demonstrate that the lookahead policy with stochastic forecasts performs better than the lookahead policy with deterministic forecasts when the Es and Pmax are large enough, and the lookahead policies outperform the greedy and updated policies in all case studies.
KW - Building
KW - Control
KW - Lookahead policies
KW - Micro-grid
UR - http://www.scopus.com/inward/record.url?scp=85074711951&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85074711951&partnerID=8YFLogxK
U2 - 10.1007/s10479-019-03444-3
DO - 10.1007/s10479-019-03444-3
M3 - Article
AN - SCOPUS:85074711951
SN - 0254-5330
VL - 303
SP - 197
EP - 216
JO - Annals of Operations Research
JF - Annals of Operations Research
IS - 1-2
ER -