Statistics in the Service of Science: Don’t Let the Tail Wag the Dog

Henrik Singmann, David Kellen, Gregory E. Cox, Suyog H. Chandramouli, Clintin P. Davis-Stober, John C. Dunn, Quentin F. Gronau, Michael L. Kalish, Sara D. McMullin, Danielle J. Navarro, Richard M. Shiffrin

Research output: Contribution to journalArticlepeer-review

Abstract

Statistical modeling is generally meant to describe patterns in data in service of the broader scientific goal of developing theories to explain those patterns. Statistical models support meaningful inferences when models are built so as to align parameters of the model with potential causal mechanisms and how they manifest in data. When statistical models are instead based on assumptions chosen by default, attempts to draw inferences can be uninformative or even paradoxical—in essence, the tail is trying to wag the dog. These issues are illustrated by van Doorn et al. (this issue) in the context of using Bayes Factors to identify effects and interactions in linear mixed models. We show that the problems identified in their applications (along with other problems identified here) can be circumvented by using priors over inherently meaningful units instead of default priors on standardized scales. This case study illustrates how researchers must directly engage with a number of substantive issues in order to support meaningful inferences, of which we highlight two: The first is the problem of coordination, which requires a researcher to specify how the theoretical constructs postulated by a model are functionally related to observable variables. The second is the problem of generalization, which requires a researcher to consider how a model may represent theoretical constructs shared across similar but non-identical situations, along with the fact that model comparison metrics like Bayes Factors do not directly address this form of generalization. For statistical modeling to serve the goals of science, models cannot be based on default assumptions, but should instead be based on an understanding of their coordination function and on how they represent causal mechanisms that may be expected to generalize to other related scenarios.

Original languageEnglish (US)
JournalComputational Brain and Behavior
DOIs
StateAccepted/In press - 2022

Keywords

  • Coordination function
  • Default Bayes Factors
  • Generalizability
  • Mixed models
  • Standardized effect sizes
  • Statistics

ASJC Scopus subject areas

  • Developmental and Educational Psychology
  • Neuropsychology and Physiological Psychology

Fingerprint

Dive into the research topics of 'Statistics in the Service of Science: Don’t Let the Tail Wag the Dog'. Together they form a unique fingerprint.

Cite this