Abstract
The problem of clutter region identification based on Markov random field (MRF) models is addressed. Observations inside each clutter region are assumed homogenous, i.e., observations follow a single probability distribution. Our goal is to partition clutter scenes into homogenous regions and to determine this underlying probability distribution. Metropolis-Hasting and reversible jump Markov chain (RJMC) algorithms are used to search for solutions based on the maximum a posteriori (MAP) criterion. Several examples illustrate the performance of our algorithm.
Original language | English (US) |
---|---|
Pages (from-to) | 1035-1050 |
Number of pages | 16 |
Journal | IEEE Transactions on Aerospace and Electronic Systems |
Volume | 39 |
Issue number | 3 |
DOIs | |
State | Published - Jul 2003 |
ASJC Scopus subject areas
- Aerospace Engineering
- Electrical and Electronic Engineering