TY - JOUR
T1 - Sources and composition of sediment pore-water dissolved organic matter in prairie pothole lakes
AU - Ziegelgruber, Kate L.
AU - Zeng, Teng
AU - Arnold, William A.
AU - Chin, Yu Ping
PY - 2013
Y1 - 2013
N2 - Sediment pore-water dissolved organic matter (DOM) in two North Dakota prairie pothole lakes was quantified by dissolved organic carbon analysis (DOC) and its composition was characterized as a function of sediment depth for molecular weight distribution (MWD), molar absorptivity at 280 nm (ε280), and fluorescence properties. Fluorescence excitation emission matrices were further analyzed by creating a Parallel Factor Analysis (PARAFAC) model specific to sedimentary pore-water DOM. The range of absolute pore-water DOC concentrations (~ 26-183 mg C L-1) greatly exceeded abundances reported for other wetlands and generally increased with depth. Significant changes occurred in e280 and fluorescence seasonally. Prairie pothole pore-water DOM is primarily allochthonous in nature and three 'humic-like' components explained ~ 90% of total sample fluorescence, while a single 'non-humic' component was responsible for the remaining 10%. The contribution of the non-humic component, however, was more significant in the top 7 cm of sediment in samples collected in early autumn and is presumably derived from algal precursor material produced by primary production in the water column over the summer. The PARAFAC results corroborate ε280 and MWD changes in pore-water DOM composition over the growing season. This dynamic process could affect the type of DOM available for biogeochemical processes seasonally.
AB - Sediment pore-water dissolved organic matter (DOM) in two North Dakota prairie pothole lakes was quantified by dissolved organic carbon analysis (DOC) and its composition was characterized as a function of sediment depth for molecular weight distribution (MWD), molar absorptivity at 280 nm (ε280), and fluorescence properties. Fluorescence excitation emission matrices were further analyzed by creating a Parallel Factor Analysis (PARAFAC) model specific to sedimentary pore-water DOM. The range of absolute pore-water DOC concentrations (~ 26-183 mg C L-1) greatly exceeded abundances reported for other wetlands and generally increased with depth. Significant changes occurred in e280 and fluorescence seasonally. Prairie pothole pore-water DOM is primarily allochthonous in nature and three 'humic-like' components explained ~ 90% of total sample fluorescence, while a single 'non-humic' component was responsible for the remaining 10%. The contribution of the non-humic component, however, was more significant in the top 7 cm of sediment in samples collected in early autumn and is presumably derived from algal precursor material produced by primary production in the water column over the summer. The PARAFAC results corroborate ε280 and MWD changes in pore-water DOM composition over the growing season. This dynamic process could affect the type of DOM available for biogeochemical processes seasonally.
UR - http://www.scopus.com/inward/record.url?scp=84877789996&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84877789996&partnerID=8YFLogxK
U2 - 10.4319/lo.2013.58.3.1136
DO - 10.4319/lo.2013.58.3.1136
M3 - Article
AN - SCOPUS:84877789996
SN - 0024-3590
VL - 58
SP - 1136
EP - 1146
JO - Limnology and Oceanography
JF - Limnology and Oceanography
IS - 3
ER -