Somatic aging pathways regulate reproductive plasticity in caenorhabditis elegans

Maria C. Ow, Alexandra M. Nichitean, Sarah E. Hall

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

In animals, early-life stress can result in programmed changes in gene expression that can affect their adult phenotype. In C. elegans nematodes, starvation during the first larval stage promotes entry into a stress-resistant dauer stage until environmental conditions improve. Adults that have experienced dauer (postdauers) retain a memory of early-life starvation that results in gene expression changes and reduced fecundity. Here, we show that the endocrine pathways attributed to the regulation of somatic aging in C. elegans adults lacking a functional germline also regulate the reproductive phenotypes of postdauer adults that experienced early-life starvation. We demonstrate that postdauer adults reallocate fat to benefit progeny at the expense of the parental somatic fat reservoir and exhibit increased longevity compared to controls. Our results also show that the modification of somatic fat stores due to parental starvation memory is inherited in the F1 generation and may be the result of crosstalk between somatic and reproductive tissues mediated by the germline nuclear RNAi pathway.

Original languageEnglish (US)
Article numbere61459
JournaleLife
Volume10
DOIs
StatePublished - 2021

ASJC Scopus subject areas

  • General Neuroscience
  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology

Fingerprint

Dive into the research topics of 'Somatic aging pathways regulate reproductive plasticity in caenorhabditis elegans'. Together they form a unique fingerprint.

Cite this