Soft-matter capacitive sensor for measuring shear and pressure deformation

Peter Roberts, Dana D. Damian, Wanliang Shan, Tong Lu, Carmel Majidi

Research output: Chapter in Book/Entry/PoemConference contribution

73 Scopus citations

Abstract

We introduce a soft-matter sensor that measures elastic pressure and shear deformation. The sensor is composed of a sheet of elastomer that is embedded with fluidic parallel-plate capacitors. When the elastomer is pressed or sheared, the electrodes of the embedded capacitors come closer together or slide past each other, respectively, leading to a change in capacitance. The magnitude and direction of the shear deformation is established by comparing the change in capacitance of multiple embedded capacitors. We characterize the soft sensor theoretically and experimentally. Experiments indicate that 2D shear and pressure deformation can be discriminated with approximately 500 μm and 5 kPa sensitivity, respectively. The theoretical predictions and experimental results are in reasonable agreement. We also propose improvements to the fabrication method in order to facilitate integration of soft-matter sensing with wearable electronics.

Original languageEnglish (US)
Title of host publication2013 IEEE International Conference on Robotics and Automation, ICRA 2013
Pages3529-3534
Number of pages6
DOIs
StatePublished - Nov 14 2013
Externally publishedYes
Event2013 IEEE International Conference on Robotics and Automation, ICRA 2013 - Karlsruhe, Germany
Duration: May 6 2013May 10 2013

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2013 IEEE International Conference on Robotics and Automation, ICRA 2013
Country/TerritoryGermany
CityKarlsruhe
Period5/6/135/10/13

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Soft-matter capacitive sensor for measuring shear and pressure deformation'. Together they form a unique fingerprint.

Cite this