TY - GEN
T1 - Small closed-chamber measurements for the uptake of trichloroethylene and ethanol vapor by fibrous surfaces
AU - Borrazzo, John E.
AU - Davidson, Cliff I.
AU - Andelman, Julian B.
PY - 1993
Y1 - 1993
N2 - Recent efforts to quantify the effect of sorption on indoor concentrations of volatile organic compounds (VOCs) have indicated that indoor surfaces may behave as reservoirs for VOCs emitted from other sources. For the surface materials of greatest interest indoors, the interactions of airborne pollutants with such surfaces have not been very extensively studied. In this study, partition coefficients, defined as the ratio of the sorbed-phase to vapor-phase equilibrium concentrations, have been measured for sorption of trichloroethylene (TCE) and ethanol (EtOH) vapors by a variety of fibrous or polymeric surfaces. Several of these, nylon, wool, polypropylene, jute, and styrene-butadiene rubber (SBR), are important components of carpet. Glass, cotton, and polyester fibers have also been included. Results indicate that for TCE, sorption to the carpet backing materials polypropylene and SBR is more significant than sorption to the nylon or wool pile fiber; partition coefficients for the former are about 300 cm3/g, while values for nylon are approximately 10 to 20 cm3/g. The opposite was found to be true for EtOH, for which partition coefficients with respect to nylon fiber are on the order of 1000 cm3/g, in contrast to those measured with respect to polypropylene or SBR, that are in the range of 20 to 40 cm3/g. Because of the concentration and temperature dependence of the observed sorption effects, an explanation based on an adsorption mechanism was reasonable in most cases. Nevertheless, absorption may also play a role in partitioning, particularly for VOCs and polymers with similar solubility parameters, such as for TCE with respect to polypropylene or SBR. Because various components of a composite material such as carpet may exhibit very different affinities for a single compound as well as different mechanisms of interaction, models for sorption using first-order kinetics may not adequately describe sorption and desorption of VOCs indoors.
AB - Recent efforts to quantify the effect of sorption on indoor concentrations of volatile organic compounds (VOCs) have indicated that indoor surfaces may behave as reservoirs for VOCs emitted from other sources. For the surface materials of greatest interest indoors, the interactions of airborne pollutants with such surfaces have not been very extensively studied. In this study, partition coefficients, defined as the ratio of the sorbed-phase to vapor-phase equilibrium concentrations, have been measured for sorption of trichloroethylene (TCE) and ethanol (EtOH) vapors by a variety of fibrous or polymeric surfaces. Several of these, nylon, wool, polypropylene, jute, and styrene-butadiene rubber (SBR), are important components of carpet. Glass, cotton, and polyester fibers have also been included. Results indicate that for TCE, sorption to the carpet backing materials polypropylene and SBR is more significant than sorption to the nylon or wool pile fiber; partition coefficients for the former are about 300 cm3/g, while values for nylon are approximately 10 to 20 cm3/g. The opposite was found to be true for EtOH, for which partition coefficients with respect to nylon fiber are on the order of 1000 cm3/g, in contrast to those measured with respect to polypropylene or SBR, that are in the range of 20 to 40 cm3/g. Because of the concentration and temperature dependence of the observed sorption effects, an explanation based on an adsorption mechanism was reasonable in most cases. Nevertheless, absorption may also play a role in partitioning, particularly for VOCs and polymers with similar solubility parameters, such as for TCE with respect to polypropylene or SBR. Because various components of a composite material such as carpet may exhibit very different affinities for a single compound as well as different mechanisms of interaction, models for sorption using first-order kinetics may not adequately describe sorption and desorption of VOCs indoors.
UR - http://www.scopus.com/inward/record.url?scp=0027840674&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0027840674&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:0027840674
SN - 0803118759
T3 - ASTM Special Technical Publication
SP - 25
EP - 41
BT - ASTM Special Technical Publication
A2 - Nagda, Niren L.
PB - Publ by ASTM
T2 - Proceedings of the Symposium on Modeling of Indoor Air Quality and Exposure
Y2 - 27 April 1992 through 28 April 1992
ER -