Simulating Gram-Negative Bacterial Outer Membrane: A Coarse Grain Model

Huilin Ma, Flaviyan Jerome Irudayanathan, Wenjuan Jiang, Shikha Nangia

Research output: Contribution to journalArticlepeer-review

70 Scopus citations


The cell envelope of Gram-negative bacteria contains a lipopolysaccharide (LPS) rich outer membrane that acts as the first line of defense for bacterial cells in adverse physical and chemical environments. The LPS macromolecule has a negatively charged oligosaccharide domain that acts as an ionic brush, limiting the permeability of charged chemical agents through the membrane. Besides the LPS, the outer membrane has radially extending O-antigen polysaccharide chains and β-barrel membrane proteins that make the bacterial membrane physiologically unique compared to phospholipid cell membranes. Elucidating the interplay of these contributing macromolecular components and their role in the integrity of the bacterial outer membrane remains a challenge. To bridge the gap in our current understanding of the Gram-negative bacterial membrane, we have developed a coarse grained force field for outer membrane that is computationally affordable for simulating dynamical process over physiologically relevant time scales. The force field was benchmarked against available experimental and atomistic simulations data for properties such as membrane thickness, density profiles of the residues, area per lipid, gel to liquid-crystalline phase transition temperatures, and order parameters. More than 17 membrane compositions were studied with a combined simulation time of over 100 μs. A comparison of simulated structural and dynamical properties with corresponding experimental data shows that the developed force field reproduces the overall physiology of LPS rich membranes. The affordability of the developed model for long time scale simulations can be instrumental in determining the mechanistic aspects of the antimicrobial action of chemical agents as well as assist in designing antimicrobial peptides with enhanced outer membrane permeation properties.

Original languageEnglish (US)
Pages (from-to)14668-14682
Number of pages15
JournalJournal of Physical Chemistry B
Issue number46
StatePublished - Nov 19 2015

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films
  • Materials Chemistry


Dive into the research topics of 'Simulating Gram-Negative Bacterial Outer Membrane: A Coarse Grain Model'. Together they form a unique fingerprint.

Cite this