Abstract
The Laser Interferometer Gravitational Wave Observatory (LIGO) consists of two widely separated 4 km laser interferometers designed to detect gravitational waves from distant astrophysical sources in the frequency range from 10 Hz to 10 kHz. The first observation run of the Advanced LIGO detectors started in September 2015 and ended in January 2016. A strain sensitivity of better than 10-23/Hz was achieved around 100 Hz. Understanding both the fundamental and the technical noise sources was critical for increasing the astrophysical strain sensitivity. The average distance at which coalescing binary black hole systems with individual masses of 30 M could be detected above a signal-to-noise ratio (SNR) of 8 was 1.3 Gpc, and the range for binary neutron star inspirals was about 75 Mpc. With respect to the initial detectors, the observable volume of the Universe increased by a factor 69 and 43, respectively. These improvements helped Advanced LIGO to detect the gravitational wave signal from the binary black hole coalescence, known as GW150914.
Original language | English (US) |
---|---|
Article number | 112004 |
Journal | Physical Review D |
Volume | 93 |
Issue number | 11 |
DOIs | |
State | Published - Jun 2 2016 |
ASJC Scopus subject areas
- Nuclear and High Energy Physics
Fingerprint
Dive into the research topics of 'Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
In: Physical Review D, Vol. 93, No. 11, 112004, 02.06.2016.
Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy
AU - Martynov, D. V.
AU - Hall, E. D.
AU - Abbott, B. P.
AU - Abbott, R.
AU - Abbott, T. D.
AU - Adams, C.
AU - Adhikari, R. X.
AU - Anderson, R. A.
AU - Anderson, S. B.
AU - Arai, K.
AU - Arain, M. A.
AU - Aston, S. M.
AU - Austin, L.
AU - Ballmer, S. W.
AU - Barbet, M.
AU - Barker, D.
AU - Barr, B.
AU - Barsotti, L.
AU - Bartlett, J.
AU - Barton, M. A.
AU - Bartos, I.
AU - Batch, J. C.
AU - Bell, A. S.
AU - Belopolski, I.
AU - Bergman, J.
AU - Betzwieser, J.
AU - Billingsley, G.
AU - Birch, J.
AU - Biscans, S.
AU - Biwer, C.
AU - Black, E.
AU - Blair, C. D.
AU - Bogan, C.
AU - Bork, R.
AU - Bridges, D. O.
AU - Brooks, A. F.
AU - Celerier, C.
AU - Ciani, G.
AU - Clara, F.
AU - Cook, D.
AU - Countryman, S. T.
AU - Cowart, M. J.
AU - Coyne, D. C.
AU - Cumming, A.
AU - Cunningham, L.
AU - Damjanic, M.
AU - Dannenberg, R.
AU - Danzmann, K.
AU - Costa, C. F.Da Silva
AU - Daw, E. J.
AU - Debra, D.
AU - Derosa, R. T.
AU - Desalvo, R.
AU - Dooley, K. L.
AU - Doravari, S.
AU - Driggers, J. C.
AU - Dwyer, S. E.
AU - Effler, A.
AU - Etzel, T.
AU - Evans, M.
AU - Evans, T. M.
AU - Factourovich, M.
AU - Fair, H.
AU - Feldbaum, D.
AU - Fisher, R. P.
AU - Foley, S.
AU - Frede, M.
AU - Fritschel, P.
AU - Frolov, V. V.
AU - Fulda, P.
AU - Fyffe, M.
AU - Galdi, V.
AU - Giaime, J. A.
AU - Giardina, K. D.
AU - Gleason, J. R.
AU - Goetz, R.
AU - Gras, S.
AU - Gray, C.
AU - Greenhalgh, R. J.S.
AU - Grote, H.
AU - Guido, C. J.
AU - Gushwa, K. E.
AU - Gustafson, E. K.
AU - Gustafson, R.
AU - Hammond, G.
AU - Hanks, J.
AU - Hanson, J.
AU - Hardwick, T.
AU - Harry, G. M.
AU - Heefner, J.
AU - Heintze, M. C.
AU - Heptonstall, A. W.
AU - Hoak, D.
AU - Hough, J.
AU - Ivanov, A.
AU - Izumi, K.
AU - Jacobson, M.
AU - James, E.
AU - Jones, R.
AU - Kandhasamy, S.
AU - Karki, S.
AU - Kasprzack, M.
AU - Kaufer, S.
AU - Kawabe, K.
AU - Kells, W.
AU - Kijbunchoo, N.
AU - King, E. J.
AU - King, P. J.
AU - Kinzel, D. L.
AU - Kissel, J. S.
AU - Kokeyama, K.
AU - Korth, W. Z.
AU - Kuehn, G.
AU - Kwee, P.
AU - Landry, M.
AU - Lantz, B.
AU - Le Roux, A.
AU - Levine, B. M.
AU - Lewis, J. B.
AU - Lhuillier, V.
AU - Lockerbie, N. A.
AU - Lormand, M.
AU - Lubinski, M. J.
AU - Lundgren, A. P.
AU - Macdonald, T.
AU - Macinnis, M.
AU - Macleod, D. M.
AU - Mageswaran, M.
AU - Mailand, K.
AU - Márka, S.
AU - Márka, Z.
AU - Markosyan, A. S.
AU - Maros, E.
AU - Martin, I. W.
AU - Martin, R. M.
AU - Marx, J. N.
AU - Mason, K.
AU - Massinger, T. J.
AU - Matichard, F.
AU - Mavalvala, N.
AU - McCarthy, R.
AU - McClelland, D. E.
AU - McCormick, S.
AU - McIntyre, G.
AU - McIver, J.
AU - Merilh, E. L.
AU - Meyer, M. S.
AU - Meyers, P. M.
AU - Miller, J.
AU - Mittleman, R.
AU - Moreno, G.
AU - Mueller, C. L.
AU - Mueller, G.
AU - Mullavey, A.
AU - Munch, J.
AU - Nuttall, L. K.
AU - Oberling, J.
AU - O'Dell, J.
AU - Oppermann, P.
AU - Oram, Richard J.
AU - O'Reilly, B.
AU - Osthelder, C.
AU - Ottaway, D. J.
AU - Overmier, H.
AU - Palamos, J. R.
AU - Paris, H. R.
AU - Parker, W.
AU - Patrick, Z.
AU - Pele, A.
AU - Penn, S.
AU - Phelps, M.
AU - Pickenpack, M.
AU - Pierro, V.
AU - Pinto, I.
AU - Poeld, J.
AU - Principe, M.
AU - Prokhorov, L.
AU - Puncken, O.
AU - Quetschke, V.
AU - Quintero, E. A.
AU - Raab, F. J.
AU - Radkins, H.
AU - Raffai, P.
AU - Ramet, C. R.
AU - Reed, C. M.
AU - Reid, S.
AU - Reitze, D. H.
AU - Robertson, N. A.
AU - Rollins, J. G.
AU - Roma, V. J.
AU - Romie, J. H.
AU - Rowan, S.
AU - Ryan, K.
AU - Sadecki, T.
AU - Sanchez, E. J.
AU - Sandberg, V.
AU - Sannibale, V.
AU - Savage, R. L.
AU - Schofield, R. M.S.
AU - Schultz, B.
AU - Schwinberg, P.
AU - Sellers, D.
AU - Sevigny, A.
AU - Shaddock, D. A.
AU - Shao, Z.
AU - Shapiro, B.
AU - Shawhan, P.
AU - Shoemaker, D. H.
AU - Sigg, D.
AU - Slagmolen, B. J.J.
AU - Smith, J. R.
AU - Smith, M. R.
AU - Smith-Lefebvre, N. D.
AU - Sorazu, B.
AU - Staley, A.
AU - Stein, A. J.
AU - Stochino, A.
AU - Strain, K. A.
AU - Taylor, R.
AU - Thomas, M.
AU - Thomas, P.
AU - Thorne, K. A.
AU - Thrane, E.
AU - Torrie, C. I.
AU - Traylor, G.
AU - Vajente, G.
AU - Valdes, G.
AU - Van Veggel, A. A.
AU - Vargas, M.
AU - Vecchio, A.
AU - Veitch, P. J.
AU - Venkateswara, K.
AU - Vo, T.
AU - Vorvick, C.
AU - Waldman, S. J.
AU - Walker, M.
AU - Ward, R. L.
AU - Warner, J.
AU - Weaver, B.
AU - Weiss, R.
AU - Welborn, T.
AU - Weßels, P.
AU - Wilkinson, C.
AU - Willems, P. A.
AU - Williams, L.
AU - Willke, B.
AU - Winkelmann, L.
AU - Wipf, C. C.
AU - Worden, J.
AU - Wu, G.
AU - Yamamoto, H.
AU - Yancey, C. C.
AU - Yu, H.
AU - Zhang, L.
AU - Zucker, M. E.
AU - Zweizig, J.
N1 - Publisher Copyright: © 2016 American Physical Society.
PY - 2016/6/2
Y1 - 2016/6/2
N2 - The Laser Interferometer Gravitational Wave Observatory (LIGO) consists of two widely separated 4 km laser interferometers designed to detect gravitational waves from distant astrophysical sources in the frequency range from 10 Hz to 10 kHz. The first observation run of the Advanced LIGO detectors started in September 2015 and ended in January 2016. A strain sensitivity of better than 10-23/Hz was achieved around 100 Hz. Understanding both the fundamental and the technical noise sources was critical for increasing the astrophysical strain sensitivity. The average distance at which coalescing binary black hole systems with individual masses of 30 M could be detected above a signal-to-noise ratio (SNR) of 8 was 1.3 Gpc, and the range for binary neutron star inspirals was about 75 Mpc. With respect to the initial detectors, the observable volume of the Universe increased by a factor 69 and 43, respectively. These improvements helped Advanced LIGO to detect the gravitational wave signal from the binary black hole coalescence, known as GW150914.
AB - The Laser Interferometer Gravitational Wave Observatory (LIGO) consists of two widely separated 4 km laser interferometers designed to detect gravitational waves from distant astrophysical sources in the frequency range from 10 Hz to 10 kHz. The first observation run of the Advanced LIGO detectors started in September 2015 and ended in January 2016. A strain sensitivity of better than 10-23/Hz was achieved around 100 Hz. Understanding both the fundamental and the technical noise sources was critical for increasing the astrophysical strain sensitivity. The average distance at which coalescing binary black hole systems with individual masses of 30 M could be detected above a signal-to-noise ratio (SNR) of 8 was 1.3 Gpc, and the range for binary neutron star inspirals was about 75 Mpc. With respect to the initial detectors, the observable volume of the Universe increased by a factor 69 and 43, respectively. These improvements helped Advanced LIGO to detect the gravitational wave signal from the binary black hole coalescence, known as GW150914.
UR - http://www.scopus.com/inward/record.url?scp=84974849312&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84974849312&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.93.112004
DO - 10.1103/PhysRevD.93.112004
M3 - Article
AN - SCOPUS:84974849312
SN - 2470-0010
VL - 93
JO - Physical Review D
JF - Physical Review D
IS - 11
M1 - 112004
ER -