Semantic segmentation with a sparse convolutional neural network for event reconstruction in MicroBooNE

(The MicroBooNE Collaboration)

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

We present the performance of a semantic segmentation network, sparsessnet, that provides pixel-level classification of MicroBooNE data. The MicroBooNE experiment employs a liquid argon time projection chamber for the study of neutrino properties and interactions. sparsessnet is a submanifold sparse convolutional neural network, which provides the initial machine learning based algorithm utilized in one of MicroBooNEs νe-appearance oscillation analyses. The network is trained to categorize pixels into five classes, which are reclassified into two classes more relevant to the current analysis. The output of sparsessnet is a key input in further analysis steps. This technique, used for the first time in liquid argon time projection chambers data and is an improvement compared to a previously used convolutional neural network, both in accuracy and computing resource utilization. The accuracy achieved on the test sample is ≥99%. For full neutrino interaction simulations, the time for processing one image is ≈0.5 sec, the memory usage is at 1 GB level, which allows utilization of most typical CPU worker machine.

Original languageEnglish (US)
Article number052012
JournalPhysical Review D
Volume103
Issue number5
DOIs
StatePublished - Mar 26 2021

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Fingerprint

Dive into the research topics of 'Semantic segmentation with a sparse convolutional neural network for event reconstruction in MicroBooNE'. Together they form a unique fingerprint.

Cite this