Self-organization of spindle-like microtubule structures

Bianca Edozie, Sumon Sahu, Miranda Pitta, Anthony Englert, Carline Fermino Do Rosario, Jennifer L. Ross

Research output: Contribution to journalArticlepeer-review

22 Scopus citations


Microtubule self-organization is an essential physical process underlying several essential cellular functions, including cell division. In cell division, the dominant arrangement is the mitotic spindle, a football-shaped microtubule-based machine responsible for separating the chromosomes. We are interested in the underlying fundamental principles behind the self-organization of the spindle shape. Prior biological works have hypothesized that motor proteins control the proper formation of the spindle. Many of these motor proteins are also microtubule-crosslinkers, so it is unclear if the critical aspect is the motor activity or the crosslinking. In this study, we seek to address this question by examining the self-organization of microtubules using crosslinkers alone. We use a minimal system composed of tubulin, an antiparallel microtubule-crosslinking protein, and a crowding agent to explore the phase space of organizations as a function of tubulin and crosslinker concentration. We find that the concentration of the antiparallel crosslinker, MAP65, has a significant effect on the organization and resulted in spindle-like arrangements at relatively low concentration without the need for motor activity. Surprisingly, the length of the microtubules only moderately affects the equilibrium phase. We characterize both the shape and dynamics of these spindle-like organizations. We find that they are birefringent homogeneous tactoids. The microtubules have slow mobility, but the crosslinkers have fast mobility within the tactoids. These structures represent a first step in the recapitulation of self-organized spindles of microtubules that can be used as initial structures for further biophysical and active matter studies relevant to the biological process of cell division.

Original languageEnglish (US)
Pages (from-to)4797-4807
Number of pages11
JournalSoft Matter
Issue number24
StatePublished - 2019
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • Condensed Matter Physics


Dive into the research topics of 'Self-organization of spindle-like microtubule structures'. Together they form a unique fingerprint.

Cite this