Secure communication in the low-SNR regime: A characterization of the energy-secrecy tradeoff

Research output: Chapter in Book/Entry/PoemConference contribution

15 Scopus citations

Abstract

Secrecy capacity of a multiple-antenna wiretap channel is studied in the low signal-to-noise ratio (SNR) regime. Expressions for the first and second derivatives of the secrecy capacity with respect to SNR at SNR = 0 are derived. Transmission strategies required to achieve these derivatives are identified. In particular, it is shown that it is optimal in the low-SNR regime to transmit in the maximum-eigenvalue eigenspace of φ = Hm-Nm/N e HeHe where Hm and He denote the channel matrices associated with the legitimate receiver and eavesdropper, respectively, and Nm and Ne are the noise variances at the receiver and eavesdropper, respectively. Energy efficiency is analyzed by finding the minimum bit energy required for secure and reliable communications, and the wideband slope. Increased bit energy requirements under secrecy constraints are quantified. Finally, the impact of fading is investigated.

Original languageEnglish (US)
Title of host publication2009 IEEE International Symposium on Information Theory, ISIT 2009
Pages2291-2295
Number of pages5
DOIs
StatePublished - 2009
Externally publishedYes
Event2009 IEEE International Symposium on Information Theory, ISIT 2009 - Seoul, Korea, Republic of
Duration: Jun 28 2009Jul 3 2009

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8102

Other

Other2009 IEEE International Symposium on Information Theory, ISIT 2009
Country/TerritoryKorea, Republic of
CitySeoul
Period6/28/097/3/09

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Secure communication in the low-SNR regime: A characterization of the energy-secrecy tradeoff'. Together they form a unique fingerprint.

Cite this