TY - JOUR
T1 - Secondary pollutants from ozone reactions with ventilation filters and degradation of filter media additives
AU - Destaillats, Hugo
AU - Chen, Wenhao
AU - Apte, Michael G.
AU - Li, Nuan
AU - Spears, Michael
AU - Almosni, Jérémie
AU - Brunner, Gregory
AU - Zhang, Jianshun Jensen
AU - Fisk, William J.
N1 - Funding Information:
This research was supported by the U.S. Environmental Protection Agency through interagency agreement DW-89-92224401 with the U.S. Department of Energy under Contract DE-AC02-05CH11231. Additional support was provided by the National Institute for Occupational Safety and Health (NIOSH) through grant number OH008891-01A2 . PTR-MS experiments were conducted at Syracuse University’s Building Energy and Environmental Systems Laboratory with equipments funded by the New York Strategically Targeted Academic Research Center in Environmental Quality Systems (NYSTAR-EQS) . Conclusions in this paper are those of the authors and not necessarily those of the U.S. Environmental Protection Agency or the U.S. Department of Energy. The authors acknowledge L.A. Gundel, M. Sidheswaran and M. Sleiman (LBNL) for helpful suggestions, T. Hotchi and D. Sullivan (LBNL) for experimental assistance and R. Patterson and M. Ringbom for facilitating access to HVAC air handling systems. We also thank anonymous reviewers for their helpful comments.
PY - 2011/7
Y1 - 2011/7
N2 - Prior research suggests that chemical processes taking place on the surface of particle filters employed in buildings may lead to the formation of harmful secondary byproducts. We investigated ozone reactions with fiberglass, polyester, cotton/polyester and polyolefin filter media, as well as hydrolysis of filter media additives. Studies were carried out on unused media, and on filters that were installed for 3 months in buildings at two different locations in the San Francisco Bay Area. Specimens from each filter media were exposed to ∼150 ppbv ozone in a flow tube under a constant flow of dry or humidified air (50% RH). Ozone breakthrough was recorded for each sample over periods of ∼1000 min; the ozone uptake rate was calculated for an initial transient period and for steady-state conditions. While ozone uptake was observed in all cases, we did not observe significant differences in the uptake rate and capacity for the various types of filter media tested. Most experiments were performed at an airflow rate of 1.3 L min-1 (face velocity = 0.013 m s-1), and a few tests were also run at higher rates (8-10 L min-1). Formaldehyde and acetaldehyde, two oxidation byproducts, were quantified downstream of each sample. Those aldehydes (m/z 31 and 45) and other volatile byproducts (m/z 57, 59, 61 and 101) were also detected in real-time using Proton-Transfer Reaction-Mass Spectrometry (PTR-MS). Low-ppbv byproduct emissions were consistently higher under humidified air than under dry conditions, and were higher when the filters were loaded with particles, as compared with unused filters. No significant differences were observed when ozone reacted over various types of filter media. Fiberglass filters heavily coated with impaction oil (tackifier) showed higher formaldehyde emissions than other samples. Those emissions were particularly high in the case of used filters, and were observed even in the absence of ozone, suggesting that hydrolysis of additives, rather than ozonolysis, is the main formaldehyde source in those filters. Emission rates of formaldehyde and acetaldehyde were not found to be large enough to substantially increase indoor concentrations in typical building scenarios. Nevertheless, ozone reactions on HVAC filters cannot be ignored as a source of low levels of indoor irritants.
AB - Prior research suggests that chemical processes taking place on the surface of particle filters employed in buildings may lead to the formation of harmful secondary byproducts. We investigated ozone reactions with fiberglass, polyester, cotton/polyester and polyolefin filter media, as well as hydrolysis of filter media additives. Studies were carried out on unused media, and on filters that were installed for 3 months in buildings at two different locations in the San Francisco Bay Area. Specimens from each filter media were exposed to ∼150 ppbv ozone in a flow tube under a constant flow of dry or humidified air (50% RH). Ozone breakthrough was recorded for each sample over periods of ∼1000 min; the ozone uptake rate was calculated for an initial transient period and for steady-state conditions. While ozone uptake was observed in all cases, we did not observe significant differences in the uptake rate and capacity for the various types of filter media tested. Most experiments were performed at an airflow rate of 1.3 L min-1 (face velocity = 0.013 m s-1), and a few tests were also run at higher rates (8-10 L min-1). Formaldehyde and acetaldehyde, two oxidation byproducts, were quantified downstream of each sample. Those aldehydes (m/z 31 and 45) and other volatile byproducts (m/z 57, 59, 61 and 101) were also detected in real-time using Proton-Transfer Reaction-Mass Spectrometry (PTR-MS). Low-ppbv byproduct emissions were consistently higher under humidified air than under dry conditions, and were higher when the filters were loaded with particles, as compared with unused filters. No significant differences were observed when ozone reacted over various types of filter media. Fiberglass filters heavily coated with impaction oil (tackifier) showed higher formaldehyde emissions than other samples. Those emissions were particularly high in the case of used filters, and were observed even in the absence of ozone, suggesting that hydrolysis of additives, rather than ozonolysis, is the main formaldehyde source in those filters. Emission rates of formaldehyde and acetaldehyde were not found to be large enough to substantially increase indoor concentrations in typical building scenarios. Nevertheless, ozone reactions on HVAC filters cannot be ignored as a source of low levels of indoor irritants.
KW - Filters
KW - HVAC
KW - Indoor pollutants
KW - Ozone
KW - Ventilation
UR - http://www.scopus.com/inward/record.url?scp=79956058157&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79956058157&partnerID=8YFLogxK
U2 - 10.1016/j.atmosenv.2011.03.066
DO - 10.1016/j.atmosenv.2011.03.066
M3 - Article
AN - SCOPUS:79956058157
SN - 1352-2310
VL - 45
SP - 3561
EP - 3568
JO - Atmospheric Environment
JF - Atmospheric Environment
IS - 21
ER -