TY - JOUR
T1 - RNAi downregulation of three key lignin genes in sugarcane improves glucose release without reduction in sugar production
AU - Bewg, William P.
AU - Poovaiah, Charleson
AU - Lan, Wu
AU - Ralph, John
AU - Coleman, Heather D.
N1 - Funding Information:
This study was funded by the Australian Research Council Discovery Program (HDC), the Natural Sciences Engineering and Research Council (HDC) and the Sugar Research and Development Corporation (Sugar Research Australia) Scholarship Program (WPB). WL and JR were funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494).
Publisher Copyright:
© The Author(s) 2016.
PY - 2016
Y1 - 2016
N2 - Background: Sugarcane is a subtropical crop that produces large amounts of biomass annually. It is a key agricultural crop in many countries for the production of sugar and other products. Residual bagasse following sucrose extraction is currently underutilized and it has potential as a carbohydrate source for the production of biofuels. As with all lignocellulosic crops, lignin acts as a barrier to accessing the polysaccharides, and as such, is the focus of transgenic efforts. In this study, we used RNAi to individually reduce the expression of three key genes in the lignin biosynthetic pathway in sugarcane. These genes, caffeoyl-CoA O-methyltransferase (CCoAOMT), ferulate 5-hydroxylase (F5H) and caffeic acid O-methyltransferase (COMT), impact lignin content and/or composition. Results: For each RNAi construct, we selected three events for further analysis based on qRT-PCR results. For the CCoAOMT lines, there were no lines with a reduction in lignin content and only one line showed improved glucose release. For F5H, no lines had reduced lignin, but one line had a significant increase in glucose release. For COMT, one line had reduced lignin content, and this line and another released higher levels of glucose during enzymatic hydrolysis. Two of the lines with improved glucose release (F5H-2 and COMT-2) also had reduced S:G ratios. Conclusions: Along with improvements in bagasse quality for the production of lignocellulosic-based fuels, there was only one line with reduction in juice sucrose extraction, and three lines with significantly improved sucrose production, providing evidence that the alteration of sugarcane for improved lignocellulosic ethanol production can be achieved without negatively impacting sugar production and perhaps even enhancing it.
AB - Background: Sugarcane is a subtropical crop that produces large amounts of biomass annually. It is a key agricultural crop in many countries for the production of sugar and other products. Residual bagasse following sucrose extraction is currently underutilized and it has potential as a carbohydrate source for the production of biofuels. As with all lignocellulosic crops, lignin acts as a barrier to accessing the polysaccharides, and as such, is the focus of transgenic efforts. In this study, we used RNAi to individually reduce the expression of three key genes in the lignin biosynthetic pathway in sugarcane. These genes, caffeoyl-CoA O-methyltransferase (CCoAOMT), ferulate 5-hydroxylase (F5H) and caffeic acid O-methyltransferase (COMT), impact lignin content and/or composition. Results: For each RNAi construct, we selected three events for further analysis based on qRT-PCR results. For the CCoAOMT lines, there were no lines with a reduction in lignin content and only one line showed improved glucose release. For F5H, no lines had reduced lignin, but one line had a significant increase in glucose release. For COMT, one line had reduced lignin content, and this line and another released higher levels of glucose during enzymatic hydrolysis. Two of the lines with improved glucose release (F5H-2 and COMT-2) also had reduced S:G ratios. Conclusions: Along with improvements in bagasse quality for the production of lignocellulosic-based fuels, there was only one line with reduction in juice sucrose extraction, and three lines with significantly improved sucrose production, providing evidence that the alteration of sugarcane for improved lignocellulosic ethanol production can be achieved without negatively impacting sugar production and perhaps even enhancing it.
KW - Caffeic acid O-methyltransferase
KW - Caffeoyl-CoA O-methyltransferase
KW - Ferulate 5-hydroxylase
KW - Lignin biosynthesis
KW - RNAi
KW - Sugarcane
UR - http://www.scopus.com/inward/record.url?scp=85030790953&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85030790953&partnerID=8YFLogxK
U2 - 10.1186/s13068-016-0683-y
DO - 10.1186/s13068-016-0683-y
M3 - Article
AN - SCOPUS:85030790953
SN - 1754-6834
VL - 9
JO - Biotechnology for Biofuels
JF - Biotechnology for Biofuels
IS - 1
M1 - 270
ER -