Abstract
Marangoni effect plays an important role in many industrial applications where a surface tension gradient induces fluid flow, e.g., the cleaning process of silicon wafers and the welding process of melted metal. Surface tension gradient can also be caused by a spatially varying temperature field which, in the absence of gravity, is solely responsible for driving a large scale convective flow. NASA STDC-1 (Surface Tension Driven Convection) experiments performed on USML-1 Spacelab missions in 1992 were designed to study thermocapillary flows in microgravity. Since then these experiments have become a benchmark in thermocapillary studies in the absence of gravity. However, interpretation of results of the original STDC-1 experiments remains challenging due to the low resolution of the available data. Analysis of the velocity field in those experiments was limited to a single tracking method without systematic and comparative studies. In the present study, we utilize multiple state-of-the-art Particle Image Velocimetry and Particle Tracking Velocimetry tools to extract the flow field from NASA STDCE-1 videos and compare the experimental data to the numerical results from COMSOL Multiphysics® v5.6. Finally, we discuss how our findings of temperature-driven Marangoni flow in the microgravity setting can improve future experiments and analysis.
Original language | English (US) |
---|---|
Article number | 5 |
Journal | npj Microgravity |
Volume | 8 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2022 |
Externally published | Yes |
ASJC Scopus subject areas
- Medicine (miscellaneous)
- Materials Science (miscellaneous)
- Biochemistry, Genetics and Molecular Biology (miscellaneous)
- Agricultural and Biological Sciences (miscellaneous)
- Physics and Astronomy (miscellaneous)
- Space and Planetary Science