Reversible MoS2 Origami with Spatially Resolved and Reconfigurable Photosensitivity

Weinan Xu, Tengfei Li, Zhao Qin, Qi Huang, Hui Gao, Kibum Kang, Jiwoong Park, Markus J. Buehler, Jacob B. Khurgin, David H. Gracias

Research output: Contribution to journalArticlepeer-review

43 Scopus citations

Abstract

Two-dimensional layered materials (2DLMs) have been extensively studied in a variety of planar optoelectronic devices. Three-dimensional (3D) optoelectronic structures offer unique advantages including omnidirectional responses, multipolar detection, and enhanced light-matter interactions. However, there has been limited success in transforming monolayer 2DLMs into reconfigurable 3D optoelectronic devices due to challenges in microfabrication and integration of these materials in truly 3D geometries. Here, we report an origami-inspired self-folding approach to reversibly transform monolayer molybdenum disulfide (MoS2) into functional 3D optoelectronic devices. We pattern and integrate monolayer MoS2 and gold (Au) onto differentially photo-cross-linked thin polymer (SU8) films. The devices reversibly self-fold due to swelling gradients in the SU8 films upon solvent exchange. We fabricate a wide variety of optically active 3D MoS2 microstructures including pyramids, cubes, flowers, dodecahedra, and Miura-oris, and we simulate the self-folding mechanism using a coarse-grained mechanics model. Using finite-difference time-domain (FDTD) simulation and optoelectronic characterization, we demonstrate that the 3D self-folded MoS2 structures show enhanced light interaction and are capable of angle-resolved photodetection. Importantly, the structures are also reversibly reconfigurable upon solvent exchange with high tunability in the optical detection area. Our approach provides a versatile strategy to reversibly configure 2D materials in 3D optoelectronic devices of broad relevance to flexible and wearable electronics, biosensing, and robotics.

Original languageEnglish (US)
Pages (from-to)7941-7949
Number of pages9
JournalNano Letters
Volume19
Issue number11
DOIs
StatePublished - Nov 13 2019
Externally publishedYes

Keywords

  • 2D materials
  • optics
  • optoelectronics
  • photodetectors
  • self-folding

ASJC Scopus subject areas

  • Bioengineering
  • General Chemistry
  • General Materials Science
  • Condensed Matter Physics
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Reversible MoS2 Origami with Spatially Resolved and Reconfigurable Photosensitivity'. Together they form a unique fingerprint.

Cite this